1. World Health Organization. Novel Coronavirus ( SARS-CoV-2): situation report 52. 2020. Avaiable from: https://www.who.int/docs/default-source/coronaviruse/20200312-sitrep-52-covid-19.pdf
2. Garg D, Srivastava AK, Dhamija RK. Beyond Fever, Cough and Dyspnea: The Neurology of COVID-19. J Assoc Physicians India. 2020; 68 (9): 62-6. [
DOI:10.4103/0028-3886.289000]
3. Paces J, Strizova Z, Smrz D, Cerny J. COVID-19 and the immune system. Physiol Res. 2020;69 (3): 379-88. [
DOI:10.33549/physiolres.934492]
4. Oxenius A, Bachmann MF, Zinkernagel RM, Hengartner HJEjoi. Virus‐specific major MHC class II‐restricted TCR‐transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur Journal Immunol. 1998; 28 (1): 390-400.
https://doi.org/10.1002/(SICI)1521-4141(199801)28:01<390::AID-IMMU390>3.0.CO;2-O [
DOI:10.1002/(SICI)1521-4141(199801)28:013.0.CO;2-O]
5. Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis. 2020; 1866 (10): 165878. [
DOI:10.1016/j.bbadis.2020.165878]
6. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018; 46 (W1): W296-W303. [
DOI:10.1093/nar/gky427]
7. Guex N, Peitsch M.C, Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis. 2009; 30; 162-73. [
DOI:10.1002/elps.200900140]
8. vBenkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2011; 27 (3): 343-50. [
DOI:10.1093/bioinformatics/btq662]
9. Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci Rep. 2017; 7 (1): :10480. [
DOI:10.1038/s41598-017-09654-8]
10. Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, et al. Immune epitope database analysis resource. Nucleic Acids Res. 2012; 40: W525-30. [
DOI:10.1093/nar/gks438]
11. Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003; 12 (5): 1007-17. [
DOI:10.1110/ps.0239403]
12. Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: Accurate web accessible predictions of Human, Mouse, and Monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res. 2008; 36: W509-512. [
DOI:10.1093/nar/gkn202]
13. Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics. 2016; 32 (4): 511-7. [
DOI:10.1093/bioinformatics/btv639]
14. Peters B, Sette A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics. 2005; 31; 6: 132. [
DOI:10.1186/1471-2105-6-132]
15. Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, et al. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res. 2008; 4: 2. [
DOI:10.1186/1745-7580-4-2]
16. Molero-Abraham M, Lafuente EM1, Flower DR, Reche PA. Selection of conserved epitopes from hepatitis C virus for pan-populational stimulation of T-cell responses. Clin Dev Immunol. 2013; 2013: 601943. [
DOI:10.1155/2013/601943]
17. Martin Closter Jespersen, Bjoern Peters, Morten Nielsen, Paolo Marcatili. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017; 45 (W1): W24-W29. [
DOI:10.1093/nar/gkx346]
18. Woodland DL. A focus on humoral immunity to viral infections. Viral Immunol. 2012; 25 (6): 441. [
DOI:10.1089/vim.2012.ed.25.6]
19. Ghafouri F, Cohan RA, Noorbakhsh F, Samimi H, Haghpanah V. An in-silico approach to develop of a multi-epitope vaccine candidate against SARS-CoV-2 envelope (E) protein. Res Sq. 2020. [
DOI:10.21203/rs.3.rs-30374/v1]