Volume 9, Issue 2 (6-2021)                   JoMMID 2021, 9(2): 97-102 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tajmir Riahy M, Honarmand Jahromi S, Khaledi M, Afkhami H, Shafaati M, Lava Khamseh H et al . Frequency of cbrA, cbrB, ndvB, and phoBR Genes in Relation to Biofilm Formation in Pseudomonas aeruginosa Clinical Isolates. JoMMID 2021; 9 (2) :97-102
URL: http://jommid.pasteur.ac.ir/article-1-297-en.html
Department of Genetic, Islamic Azad University, Varamin- Pishva Branch, Varamin, Iran.
Abstract:   (1986 Views)
Introduction: After Staphylococcus aureus and Escherichia coli, Pseudomonas aeruginosa is the third cause of hospital-acquired infection (HAI). This bacteria's ability to colonize in different environments, especially in hospitals and biofilm formation, has added to its impact as an HAI. The molecular mechanism of biofilm formation is not well understood, but several genes contribute to this phenomenon.  This study investigates the frequency of cbrA, cbrB, phoBR, and ndvB genes in biofilm-forming P. aeruginosa isolates. Methods: Fifty P. aeruginosa clinical isolates were collected from various sources such as urine, ulcer, blood, secretions, and trachea in Milad Hospital, Tehran, from 2017 to 2018. Biofilm formation in the isolates was assessed by the microtiter plate assay, and the frequency of cbrA, cbrB, phoBR, and ndvB genes was investigated by PCR. Results: Among the 50 isolates, 44% were strong biofilm former, 34% moderate biofilm former, 12% weak biofilm former, and 10% did not form biofilms. PCR revealed a frequency of 94% for the cbrA gene, 78% for cbrB, 96% for ndvB, and 48% for phoBR.  The coexistence of all four genes was 68% in strong biofilm former isolates, 41% in moderate biofilm former isolates, 37% in weak biofilm former, and zero in the isolates that formed no biofilm. Conclusion: The high frequency of ndvB and cbrA genes and the coexistence of ndvB and cbrB suggest the contribution of these genes in the biofilm formation of P.  aeruginosa.
Full-Text [PDF 1492 kb]   (1036 Downloads)    
Type of Study: Original article | Subject: Microbial pathogenesis
Received: 2020/10/21 | Accepted: 2021/06/20 | Published: 2021/08/29

References
1. Nosrati, N., S. Honarmand Jahromy, and S. Zare Karizi, Comparison of Tissue Culture Plate, Congo red Agar and Tube Methods for Evaluation of Biofilm Formation among Uropathogenic E. coli Isolates. Iran J Med Microbiol. 2017: 11 (3); 49-58.
2. Basatian-Tashkan B, Niakan M, Khaledi M, Afkhami H, Sameni F, Bakhti SH, et al. Antibiotic resistance assessment of Acinetobacter baumannii isolates from Tehran hospitals due to the presence of efflux pumps encoding genes (adeA and adeS genes) by molecular method. BMC Res Notes. 2020: 13 (1); 1-6. [DOI:10.1186/s13104-020-05387-6]
3. J W Costerton, P S Stewart, E P Greenberg. Bacterial biofilms: a common cause of persistent infections. Science. 1999: 284 (5418); 1318-22. [DOI:10.1126/science.284.5418.1318]
4. Carey D Nadell, Deirdre Ricaurte, Jing Yan, Knut Drescher, Bonnie L Bassler. Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms. Elife. 2017: 6; e21855. [DOI:10.7554/eLife.21855]
5. Ciofu O, T Tolker-Nielsen. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-How P. aeruginosa can escape antibiotics. Front Microbiol. 2019: 10; 913. [DOI:10.3389/fmicb.2019.00913]
6. Hashemi B, Afkhami H, Khaledi M, Kiani M, Bialvaei AZ, Fathi J, et al. Frequency of Metalo beta Lactamase genes, bla IMP1, INT 1 in Acinetobacter baumanii isolated from burn patients North of Iran. Gene Rep. 2020: 21; 100800. [DOI:10.1016/j.genrep.2020.100800]
7. Beaudoin T, Zhang L, Hinz AJ, Parr CJ, Mah TF. The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms. J Bacteriol. 2012: 194 (12); 3128-36. [DOI:10.1128/JB.06178-11]
8. Schönborn S, V Krömker. Detection of the biofilm component polysaccharide intercellular adhesin in Staphylococcus aureus infected cow udders. Vet Microbiol. 2016: 196; 126-8. [DOI:10.1016/j.vetmic.2016.10.023]
9. Kiani M, Astani A, Eslami G, Khaledi M, Afkhami H, Rostami S, et al. Upstream region of OprD mutations in imipenem-resistant and imipenem-sensitive Pseudomonas isolates. AMB Express. 2021: 11 (1); 82. [DOI:10.1186/s13568-021-01243-3]
10. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 1998: 280 (5361); 295-8. [DOI:10.1126/science.280.5361.295]
11. Dubern J-F, Diggle SP. Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst. 2008: 4 (9); 882-8. [DOI:10.1039/b803796p]
12. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A. A hierarchical quorum‐sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary‐phase sigma factor RpoS. Mol Microbiol. 1996: 21 (6); 1137-46. [DOI:10.1046/j.1365-2958.1996.00063.x]
13. Mack D, Siemssen N, Laufs R. Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion. Infect Immun. 1992: 60 (5); 2048-57. [DOI:10.1128/iai.60.5.2048-2057.1992]
14. Mack D, Bartscht K, Fischer C, Rohde H, Grahl C de, Dobinsky S, et al. Genetic and biochemical analysis of Staphylococcus epidermidis biofilm accumulation. Methods Enzymol. 2001: 336; 215-39. [DOI:10.1016/S0076-6879(01)36592-8]
15. Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007: 115 (8); 891-9. [DOI:10.1111/j.1600-0463.2007.apm_630.x]
16. Topley W. Topley and Wilson's Microbiology and Microbial Infections, 8 Volume Set.
17. Jabalameli L, Emaneini M, Jabalameli F. Evaluation of antibiotic resistant pattern, detection of exo genes, and determining biofilm formation ability among Pseudomonas aeruginosa isolated from blood and urine samples. New Cell Mol Biotechnol. 2017: 7 (28); 61-8.
18. Nishijyo T, Haas D, Itoh Y. The CbrA-CbrB two‐component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa. Mol Microbiol. 2001: 40 (4); 917-31. [DOI:10.1046/j.1365-2958.2001.02435.x]
19. Yeung AT, Bains M, Hancock RE. The sensor kinase CbrA is a global regulator that modulates metabolism, virulence, and antibiotic resistance in Pseudomonas aeruginosa. J Bacteriol. 2011: 193 (4); 918-31. [DOI:10.1128/JB.00911-10]
20. Abdou L, Chou H-T, Haas D, Lu Ch-D. Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa. J Bacteriol. 2011: 193 (11): 2784-92. [DOI:10.1128/JB.00164-11]
21. Kirketerp-Møller K, Ø Jensen P, Fazli M, G Madsen K, Pedersen J, Moser C, et al. Distribution, organization, and ecology of bacteria in chronic wounds. J Clin Microbiol. 2008: 46 (8); 2717-22. [DOI:10.1128/JCM.00501-08]
22. Saffari M, Karami SH, Firoozeh F, Sehat M. Evaluation of biofilm-specific antimicrobial resistance genes in Pseudomonas aeruginosa isolates in Farabi Hospital. J Med Microbiol. 2017: 66 (7); 905-9. [DOI:10.1099/jmm.0.000521]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.