1. 1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199-207. [
DOI:10.1056/NEJMoa2001316]
2. WHO. Coronavirus disease 2019 (COVID-19) Situation Report. Available on https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
3. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418-23. [
DOI:10.1002/jmv.25681]
4. Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol. 2006;7(2):131-7. [
DOI:10.1038/ni1303]
5. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424-32. [
DOI:10.1002/jmv.25685]
6. Lu X, Pan J, Tao J, Guo D. SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes. 2011;42(1):37-45. [
DOI:10.1007/s11262-010-0544-x]
7. Hu W, Yen YT, Singh S, Kao CL, Wu-Hsieh BA. SARS-CoV regulates immune function-related gene expression in human monocytic cells. Viral Immunol. 2012;25(4):277-88. [
DOI:10.1089/vim.2011.0099]
8. Totura AL, Whitmore A, Agnihothram S, Schafer A, Katze MG, Heise MT, et al. Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection. mBio. 2015;6(3):e00638-15. [
DOI:10.1128/mBio.00638-15]
9. E Christopher M, P Wong J. Use of toll-like receptor 3 agonists against respiratory viral infections. Anti-Inflammatory Anti-Allergy Agents in Medicinal Chemistry. 2011;10(5):327-38. [
DOI:10.2174/1871523011109050327]
10. de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Roles of Host Gene and Non-coding RNA Expression in Virus Infection: Springer; 2017. p. 1-42. [
DOI:10.1007/82_2017_25]
11. Li Y, Chen M, Cao H, Zhu Y, Zheng J, Zhou HJ. Extraordinary GU-rich single-strand RNA identified from SARS coronavirus contributes an excessive innate immune response. Microbes infection. 2013;15(2):88-95. [
DOI:10.1016/j.micinf.2012.10.008]
12. Zhao X, Chu H, Wong BH-Y, Chiu MC, Wang D, Li C, et al. Activation of C-Type Lectin Receptor and (RIG)-I-Like Receptors Contributes to Proinflammatory Response in Middle East Respiratory Syndrome Coronavirus-Infected Macrophages. The Journal of Infectious Diseases. 2020;221(4):647-59. [
DOI:10.1093/infdis/jiz483]
13. Arpaia N, Barton GMJ. Toll-like receptors: key players in antiviral immunity. Current opinion in virology. 2011;1(6):447-54. [
DOI:10.1016/j.coviro.2011.10.006]
14. Yu M, Levine SJJ. Toll-like receptor 3, RIG-I-like receptors and the NLRP3 inflammasome: key modulators of innate immune responses to double-stranded RNA viruses. Cytokine growth factor reviews. 2011;22(2):63-72. [
DOI:10.1016/j.cytogfr.2011.02.001]
15. Tuvshinjargal N, Lee W, Park B, Han KJ. PRIdictor: protein-RNA interaction predictor. Biosystems. 2016;139:17-22. [
DOI:10.1016/j.biosystems.2015.10.004]
16. Yan Y, Zhang D, Zhou P, Li B, Huang S-YJ. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic acids research. 2017;45(W1):W365-W73. [
DOI:10.1093/nar/gkx407]
17. Yan Y, Huang S-YJ. Pushing the accuracy limit of shape complementarity for protein-protein docking. BMC bioinformatics. 2019;20(25):696. [
DOI:10.1186/s12859-019-3270-y]
18. Rokni M, Ghasemi V, Tavakoli Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Rev Med Virol. 2020.
19. Sheahan T, Morrison TE, Funkhouser W, Uematsu S, Akira S, Baric RS, et al. MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS pathogens. 2008;4(12). [
DOI:10.1371/journal.ppat.1000240]
20. Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M, et al. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. Journal of Biological Chemistry. 2005;280(7):5571-80. [
DOI:10.1074/jbc.M410592200]
21. Hewson CA, Jardine A, Edwards MR, Laza-Stanca V, Johnston SLJ. Toll-like receptor 3 is induced by and mediates antiviral activity against rhinovirus infection of human bronchial epithelial cells. Journal of virology. 2005;79(19):12273-9. [
DOI:10.1128/JVI.79.19.12273-12279.2005]
22. Huang S, Wei W, Yun YJ. Upregulation of TLR7 and TLR3 gene expression in the lung of respiratory syncytial virus infected mice. Acta microbiologica Sinica. 2009;49(2):239-45.
23. Wong J, Christopher M, Viswanathan S, Dai X, Salazar A, Sun L-Q, et al. Antiviral role of toll-like receptor-3 agonists against seasonal and avian influenza viruses. Current pharmaceutical design. 2009;15(11):1269-74. [
DOI:10.2174/138161209787846775]
24. Wang Q, Nagarkar DR, Bowman ER, Schneider D, Gosangi B, Lei J, et al. Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses. The Journal of Immunology. 2009;183(11):6989-97. [
DOI:10.4049/jimmunol.0901386]
25. Sironi M, Biasin M, Cagliani R, Forni D, De Luca M, Saulle I, et al. A common polymorphism in TLR3 confers natural resistance to HIV-1 infection. The Journal of Immunology. 2012;188(2):818-23. [
DOI:10.4049/jimmunol.1102179]
26. Rong Y, Song H, You S, Zhu B, Zang H, Zhao Y, et al. Association of Toll-like receptor 3 polymorphisms with chronic hepatitis B and hepatitis B-related acute-on-chronic liver failure. Inflammation. 2013;36(2):413-8. [
DOI:10.1007/s10753-012-9560-4]
27. Huang X, Li H, Wang J, Huang C, Lu Y, Qin X, et al. Genetic polymorphisms in Toll-like receptor 3 gene are associated with the risk of hepatitis B virus-related liver diseases in a Chinese population. Gene. 2015;569(2):218-24. [
DOI:10.1016/j.gene.2015.05.054]
28. Barkhash AV, Voevoda MI, Romaschenko AGJ. Association of single nucleotide polymorphism rs3775291 in the coding region of the TLR3 gene with predisposition to tick-borne encephalitis in a Russian population. Antiviral research. 2013;99(2):136-8. [
DOI:10.1016/j.antiviral.2013.05.008]
29. Ishizaki Y, Takemoto M, Kira R, Kusuhara K, Torisu H, Sakai Y, et al. Association of toll-like receptor 3 gene polymorphism with subacute sclerosing panencephalitis. Journal of neurovirology. 2008;14(6):486-91. [
DOI:10.1080/13550280802298120]
30. Mukherjee S, Tripathi AJ. Contribution of Toll like receptor polymorphisms to dengue susceptibility and clinical outcome among eastern Indian patients. Immunobiology. 2019;224(6):774-85. [
DOI:10.1016/j.imbio.2019.08.009]
31. Sghaier I, Zidi S, Mouelhi L, Ghazoueni E, Brochot E, Almawi W, et al. TLR3 and TLR4 SNP variants in the liver disease resulting from hepatitis B virus and hepatitis C virus infection. British journal of biomedical science. 2019;76(1):35-41. [
DOI:10.1080/09674845.2018.1547179]
32. Mosaad YM, Metwally SS, Farag RE, Lotfy ZF, AbdelTwab HEJ. Association between toll-like receptor 3 (TLR3) rs3775290, TLR7 rs179008, TLR9 rs352140 and chronic HCV. Immunological investigations. 2019;48(3):321-32. [
DOI:10.1080/08820139.2018.1527851]
33. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497-506. [
DOI:10.1016/S0140-6736(20)30183-5]