Volume 8, Issue 1 (1-2020)                   JoMMID 2020, 8(1): 29-33 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Massoud R, Sharifan A, Khosravi-Darani K, Asadi G. Cadmium Bioremoval by Saccharomyces cerevisiae in Milk. JoMMID. 2020; 8 (1) :29-33
URL: http://jommid.pasteur.ac.ir/article-1-235-en.html
Department of Food Science and Technology, Science and Research branch, Islamic Azad University, Tehran, Iran
Abstract:   (367 Views)
Introduction: The application of biosorbents like bacteria, yeast, and algae is a biotechnological method for eliminating heavy metals from the environment. These microorganisms can also be used for the decontamination of heavy metal in food and water. Methods: In this study, we investigated the Cadmium (Cd) biosorption in milk by using Saccharomyces cerevisiae. For this purpose, Cd and S. cerevisiae were added to milk, and the bioremoval process was monitored for four days. We evaluated six variables, including exposure time, temperature, S. cerevisiae concentration, viability yeasts, shaking rate, and initial Cd concentration in the bioremoval process. Results: The analysis of ANOVA showed that among the above six variables, S. cerevisiae concentration, initial Cd concentration, and exposure time were statistically significantly associated with Cd removal (P values ≤0.05). The highest biosorption (70%) was observed after 4 days with 30×108 CFU S. cerevisiae in milk containing 80 μg/L of Cd. Conclusion: Our findings provided further evidence for S. cerevisiae as a powerful biosorbent for Cd removal from milk and a potentially safe and green tool for providing safe and healthy food supply.
Full-Text [PDF 281 kb]   (46 Downloads)    
Type of Study: Original article | Subject: Other
Received: 2020/01/25 | Accepted: 2020/04/27 | Published: 2020/01/11

1. Rajaganapathy V, Xavier F, Sreekumar D, Mandal PK. Heavy metal contamination in soil, water and Fodder and their presence in livestock and products: a review. J Environ Sci Technol. 2011; 4: 234-249. [DOI:10.3923/jest.2011.234.249]
2. Sardar A, Hameed K, Afzal S. Heavy metals contamination and what are the impacts? Greener J Environ Manag Public Saf. 2013; 2: 17-19.
3. Patton S. Milk Its remarkable contribution to human health and well-being. Taylor and Francis Publishers; 2017; 250-288. [DOI:10.4324/9781315124513]
4. Maslehat S, Mostafavi E. The History of Milk. J Med Microbiol Infect Dis. 2018; 6 (4): 87-90.
5. Weldeslassi T, Balwant H, Oves M. Chemical Contaminants in Soil. Air and Aquatic Ecosystem Mod Age Environ Prob Rem. 2017; 25: 1-22. [DOI:10.1007/978-3-319-64501-8_1]
6. Awasthi V, Bahman S, Thakur LK, Singh SK, Dua A, Ganguly S. Contaminants in milk an assessment study. Indian J Public Health. 2012; 56: 25-40.
7. Lokhande RS, Singare PU, Pimple DS. Toxicity Study of Heavy Metals Pollutants in Waste Water Effluent Samples Collected from Taloja Industrial Estate of Mumbai, India. Res Environ. 2011; 1 (1): 13-19. [DOI:10.5923/j.ije.20110101.01]
8. Li XG, Li DB, Yan ZN, Ao YS. Biosorption and bioaccumulation characteristics of cadmium by plant growth-promoting rhizobacteria. RSC Adv. 2018; 83-92. [DOI:10.1039/C8RA06270F]
9. Sari A, Tuzen M. Biosorption of Pb (II) and Cd (II) from aqueous solution usinggreen alga (Ulva lactuca) biomass. J Hazard Mater. 2008: 152: 302-308. [DOI:10.1016/j.jhazmat.2007.06.097]
10. Hajialigol S, Taher MA, Malekpour A. A new method for the selective removal of cadmium and zinc ions from aqueous solution by modified clinoptilolite. Adsorp Sci Technol. 2006; 24: 487-496. [DOI:10.1260/026361706780154437]
11. Alani MS, Al-Azzawi MN. Assessment of Lead Cadmium and Copper concentrations in Raw Milk Collected from different location in Iraq. Iraq J Sci. 2016; 56 (1): 350-355.
12. Ayar A, Sert D, Akın N. The trace metal levels in milk and dairy products consumed in middle Anatolia-Turkey. Environ Monitor Assess. 2015; 152 (1):1-12. [DOI:10.1007/s10661-008-0291-9]
13. Starska k, Wojciechowska-Mazurek M, Mania M, Brulinska-Ostrowska E, Biernat U, Karlowski K. Noxious elements in milk and milk products in Poland. Polish J Environ. 2011; 20 (4): 1043-1051.
14. Qin L, Wang X, Li W, Tong X, Tong W. The minerals and heavy metals in cow's milk in China Japan J Health Sci. 2009; 55 (2): 300-305. [DOI:10.1248/jhs.55.300]
15. Nejatolahi M, Mehrjo F, Sheykhi A, Bineshpor M. Lead Concentrations in Raw Cows' Milk from Fars Province of Iran. Americ J Food Nut. 2014; 2 (5): 92-94.
16. Najarnezhad V, Akbarabadi M. Heavy metals in raw cow and ewe milk from north-east Iran. Food Add Contamin. 2013; 12: 2-6. [DOI:10.1080/19393210.2013.777799]
17. Xu J, Bravo AJ, Lagerkvist A, Bertilsson A, Sjöblom R, Kumpiene J. Sources and remediation techniques for metal contaminates. Environ Int. 2015; 74: 42-53. [DOI:10.1016/j.envint.2014.09.007]
18. Pakdel M, Soleimanian-Zad S, Akbari-Alavijeh S. Screening of Lactic acid bacteria to detect potent biosorbents of lead and cadmium. Food Control. 2018; 28: 33-40. [DOI:10.1016/j.foodcont.2018.12.044]
19. Kumar N, Kumar V, Panwar R, Ram C. Efficacy of indigenous probiotic Lactobacillus strains to reduce cadmium bioaccessibility - An in vitro digestion model. Environ Sci Pollut Res. 2016; 25: 22-33.
20. Hadiani MR, Khosravi-Darani K, Rahimifard N, Younesi H. Biosorption of low concentration levels of Lead (II) and Cadmium (II) from aqueous solution by Saccharomyces cerevisiae. Biocat Agr Biotech. 2018; 15: 25-34. [DOI:10.1016/j.bcab.2018.05.001]
21. Massoud R, Hadiani MR, Khosravi Darani K. Bioremediation of heavy metals in food industry Application of Saccharomyces cerevisiae. Electron J Biotechnol. 2019; 37: 56-60. [DOI:10.1016/j.ejbt.2018.11.003]
22. Salimi M, Mahzounieh M. Saccharomyces cerevisiae on Mo and Cd removal. J Med Microbiol Infect Dis. 2015; 3 (2): 18-22.
23. Amirnia S, Ray MB, Margaritis A. Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor-biosorption system. Chem Eng J. 2015; 264: 863-872. [DOI:10.1016/j.cej.2014.12.016]
24. Hadiani MR, Khosravi-Darani K, Rahimifard N, Younesi H. Assessment of Mercury biosorption by Saccharomyces cerevisiae Response surface methodology for optimization of low Hg (II) concentrations. J Environ Chem Eng. 2018; 6: 4980-4987. [DOI:10.1016/j.jece.2018.07.034]
25. Massoud R, Khosravi-Darani K, Sharifan A, Asadi GH. Lead Bioremoval from Milk by Saccharomyces cerevisiae. Biocat Agri Biotech. 2019; 22: 11-20. [DOI:10.1016/j.bcab.2019.101437]
26. Infante C, Arco D, Angulo E. Removal of lead mercury and nickel using the yeast Saccharomyces cerevisiae. Rev MVZ Cordoba. 2014; 19: 4141-4149. [DOI:10.21897/rmvz.107]
27. Chen C, Wang J. Review on biosorption of heavy metal by Saccharomyces cerevisiae. Chin J Biotechnol. 2006; 26: 69-76.
28. Farhan SN, Khadom AA. Biosorption of heavy metals from aqueous solutions by Saccharomyces Cerevisiae. Int J Ind Chem. 2015; 6: 119-130. [DOI:10.1007/s40090-015-0038-8]
29. Iranian National Standardization Organization, Microbiology of milk and milk products - Specifications and test methods. ISO 2406: 2017.
30. Sepehr M.N. Zarrabi M. Amrane A. Removal of CR (III) from model solutions by isolated Aspergillus Niger and Aspergillus oryzae living microorganisms: Equilibrium and kinetic studies. J Taiwan Inst Chem Eng. 2012; 43 420-427. [DOI:10.1016/j.jtice.2011.12.001]
31. Wang T, Sun H, Jiang C, Mao H, Zhang Y. Immobilization of Cd in soil and changes of soil microbial community by bioaugmentation of UV-mutated Bacillus subtilis 38 assisted by biostimulation. Eur J Soil Biol. 2014; 65: 62-69. [DOI:10.1016/j.ejsobi.2014.10.001]
32. Khan N, Jeong S, Hwang M, Kim JS, Choi SH, Yeong E, et al. Analysis of minor and trace elements in milk and yogurts by inductively coupled plasma-mass sperometry (ICP-MS). Food Chem. 2014; 147: 220-224. [DOI:10.1016/j.foodchem.2013.09.147]
33. Goksungur Y, Uren S, Guvenc U. Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomass. Bioresour Technol. 2005; 96: 103-109. [DOI:10.1016/j.biortech.2003.04.002]
34. Wang JL, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae a review. Biotechnol Adv. 2006; 24: 427-451. [DOI:10.1016/j.biotechadv.2006.03.001]
35. Zoghi A, Khosravi-Darani K, Sohrabvandi S. Surface Binding of Toxins and Heavy Metals by Probiotics. Mini Rev Med Chem. 2014; 14: 84-98. [DOI:10.2174/1389557513666131211105554]
36. Vasudevan P, Padmavathy V, Dhingra SC. Kinetics of biosorption of cadmium on Baker's yeast. Bioresour Technol. 2003; 89: 281-287. [DOI:10.1016/S0960-8524(03)00067-1]
37. Vinopal S, Ruml T, Kotrba P. Biosorption of Cd and Zn by cell surface-engineered Saccharomyces cerevisiae. Int Biodeterior Biodegrad. 2007; 60: 96-102 [DOI:10.1016/j.ibiod.2006.12.007]
38. Amini A, Younesi H. Biosorption of Cd (II) Ni (II) and Pb (II) from Aqueous Solution by Dried Biomass of Aspergillus niger, Application of Response Surface Methodology to the Optimization of Process Parameters. Clean Soil Air Water J. 2009; 37: 776-786. [DOI:10.1002/clen.200900090]
39. Hatami Fard G, Mehrnia MR. Investigation of mercury removal by Micro-Algae dynamic membrane bioreactor from simulated waste water. J Environ Chem Eng. 2016; 10: 25-33.
40. Saber-Samandari S, Gazi M. Removal of mercury (II) from aqueous solution usingchitosan-graft-Polyacrylamide Semi-IPN hydrogels. Sep Sci Technol. 2013; 48: 1382-1390. [DOI:10.1080/01496395.2012.729121]
41. Kazy SKD, Souza SF, Sar P. Uranium and thorium sequestration by a Pseudomonas sp. mechanism and chemical characterization. J Hazard Mater. 2009; 163: 65-72. [DOI:10.1016/j.jhazmat.2008.06.076]

Add your comments about this article : Your username or Email:

Send email to the article author

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.