Volume 7, Issue 4 (10-2019)                   JoMMID 2019, 7(4): 132-137 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ehsani G, Fahmide F, Norouzian D, Atyabi S M, Ehsani P. Bioactivity Determination of Recombinant lysostaphin Immobilized on Glass Surfaces Modified by Cold Atmospheric Plasma on Staphylococcus aureus. JoMMID. 2019; 7 (4) :132-137
URL: http://jommid.pasteur.ac.ir/article-1-225-en.html
Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (3023 Views)
Introduction: Staphylococcus aureus is a source of nosocomial infections and one of the significant concerns in patients with indwelling devices. Lysostaphin is a bacterially produced endopeptidase with a unique activity on S. aureus. Plasma, the fourth state of the material, consists of charged ions, free electrons, and activated neutral species. Biomedical applications of cold plasma are rapidly growing due to its capacity to treat heat-sensitive objects such as polymeric materials and biological samples. It activates surfaces by etching them to stabilize proteins. The direct effect of cold atmospheric plasma on the eradication of microorganisms have been investigated. However, there is no report on immobilizing antibiotic agents. Methods: In this study, the lysostaphin protein was expressed and purified using Ni-NTA column, then the purified enzyme was immobilized on glass surfaces pretreated with cold atmospheric plasma for 150 s, 200 s, and 300 s. The antimicrobial activity of immobilized lysostaphin on S. aureus was approved by in vitro analysis. Results: The 300 s plasma treatment confirmed to be the best time arrangement for more lysostaphin immobilization, shown by Atomic Force Microscopy. Conclusion: Our results showed that passive adsorption to the treated surface does not affect the structure and subsequent antimicrobial function of the recombinant protein compared to the standard proteins.
Full-Text [PDF 526 kb]   (463 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2019/11/11 | Accepted: 2019/12/16 | Published: 2020/03/12

1. 1. Miao J, Pangule RC, Paskaleva EE, Hwang EE, Kane RS, Linhardt RJ, et al. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials. 2011; 32 (36): 9557-67. [DOI:10.1016/j.biomaterials.2011.08.080]
2. Pangule RC, Brooks SJ, Dinu CZ, Bale SS, Salmon SL, Zhu G, et al. Antistaphylococcal Nanocomposite Films Based on Enzyme− Nanotube Conjugates. ACS nano. 2010; 4 (7): 3993-4000. [DOI:10.1021/nn100932t]
3. Kusuma CM, Kokai-Kun JF. Comparison of four methods for determining lysostaphin susceptibility of various strains of Staphylococcus aureus. Antimicrob Agents Ch. 2005; 49 (8): 3256-63. [DOI:10.1128/AAC.49.8.3256-3263.2005]
4. Shah A, Mond J, Walsh S. Lysostaphin-coated catheters eradicate Staphylococccus aureus challenge and block surface colonization. Antimicrob Agents Ch. 2004; 48 (7): 2704-7. [DOI:10.1128/AAC.48.7.2704-2707.2004]
5. Sasai Y, Kuzuya M, Kondo S-i, Yamauchi Y. Cold plasma techniques for pharmaceutical and biomedical engineering: INTECH Open Access Publisher; 2011. [DOI:10.5772/13366]
6. Dyer J, Grosvenor A. Protein Fibre surface modification. NATURAL DYES. 2011: 111. [DOI:10.5772/22601]
7. Recek N, Jaganjac M, Kolar M, Milkovic L, Mozetič M, Stana-Kleinschek K, et al. Protein adsorption on various plasma-treated polyethylene terephthalate substrates. Molecules. 2013; 18 (10): 12441-63. [DOI:10.3390/molecules181012441]
8. Jose B, Antoci Jr V, Zeiger AR, Wickstrom E, Hickok NJ. Vancomycin covalently bonded to titanium beads kills Staphylococcus aureus. Chem Biol. 2005; 12 (9): 1041-8. [DOI:10.1016/j.chembiol.2005.06.013]
9. Aumsuwan N, Heinhorst S, Urban MW. The effectiveness of antibiotic activity of penicillin attached to expanded poly (tetrafluoroethylene) (ePTFE) surfaces: a quantitative assessment. Biomacromolecules. 2007; 8 (11): 3525-30. [DOI:10.1021/bm700803e]
10. Farhangnia L, Ghaznavi-Rad E, Mollaee N, Abtahi H. Cloning, Expression, and Purification of Recombinant Lysostaphin From Staphylococcus simulans. Jundishapur J Microb. 2014; 7 (5). [DOI:10.5812/jjm.10009]
11. Shapourzadeh A, Rahimi-Verki N, Atyabi S-M, Shams-Ghahfarokhi M, Jahanshiri Z, Irani S, et al. Inhibitory effects of cold atmospheric plasma on the growth, ergosterol biosynthesis, and keratinase activity in Trichophyton rubrum. Arch Biochemistry Biophys. 2016; 608: 27-33. [DOI:10.1016/j.abb.2016.07.012]
12. Meghdadi M, Atyabi S-M, Pezeshki-Modaress M, Irani S, Noormohammadi Z, Zandi M. Cold atmospheric plasma as a promising approach for gelatin immobilization on poly (ε-caprolactone) electrospun scaffolds. Progress in biomaterials. 2019: 1-11. [DOI:10.1007/s40204-019-0111-z]
13. Szweda P, Schielmann M, Kotlowski R, Gorczyca G, Zalewska M, Milewski S. Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. App Microbiol Biot. 2012; 96 (5): 1157-74. [DOI:10.1007/s00253-012-4484-3]
14. Szweda P, Kotłowski R, Kur J. New effective sources of the Staphylococcus simulans lysostaphin. J BIOTECHNOL. 2005; 117 (2): 203-13. [DOI:10.1016/j.jbiotec.2005.01.012]
15. Gallo J, Holinka M, Moucha CS. Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci. 2014; 15 (8): 13849-80. [DOI:10.3390/ijms150813849]
16. Wu JA, Kusuma C, Mond JJ, Kokai-Kun JF. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob Agents Ch. 2003; 47 (11): 3407-14. [DOI:10.1128/AAC.47.11.3407-3414.2003]
17. Hoffmann C, Berganza C, Zhang J. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Med Gas Res. 2013; 3 (1): 21. [DOI:10.1186/2045-9912-3-21]
18. Hoffmann C, Berganza C, Zhang J. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Med Gas Res. 2013; 3: 21. [DOI:10.1186/2045-9912-3-21]
19. Bárdos L, Baránková H. Cold atmospheric plasma: Sources, processes, and applications. Thin Solid Films. 2010; 518 (23): 6705-13. [DOI:10.1016/j.tsf.2010.07.044]
20. Atyabi SM, Sharifi F, Irani S, Zandi M, Mivehchi H, Nagheh Z. Cell Attachment and Viability Study of PCL Nano-fiber Modified by Cold Atmospheric Plasma. Cell Biochem Biophys. 1-10.
21. Chiper A, Rusu G, Vitelaru C, Mihaila I, Popa G. A comparative study of helium and argon DBD plasmas suitable for thermosensitive materials processing. Rom J Phys S. 2011; 56: 126-31.
22. Preedy EC, Brousseau E, Evans SL, Perni S, Prokopovich P. Adhesive forces and surface properties of cold gas plasma treated UHMWPE.Collioid Surface A. 2014; 460: 83-9. [DOI:10.1016/j.colsurfa.2014.03.052]

Add your comments about this article : Your username or Email:

Send email to the article author

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.