Volume 8, Issue 1 (1-2020)                   JoMMID 2020, 8(1): 34-39 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saremi M, Saremi L, Feizy F, Vafaei S, Lashkari A, Saltanatpour Z et al . The Prevalence of VIM, IMP, and NDM-1 Metallo-beta-Lactamase Genes in Clinical Isolates of Klebsiella pneumoniae in Qom Province, Iran. JoMMID 2020; 8 (1) :34-39
URL: http://jommid.pasteur.ac.ir/article-1-211-en.html
Medical Genetics Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
Abstract:   (3723 Views)
Introduction: An increase in the consumption of antibiotics has raised significant concerns over the treatment of Klebsiella pneumonia-infected patients. In this study, the resistance pattern of K. pneumoniae to antibiotics such as imipenem, meropenem, and ertapenem, as well as the frequency of Metallo-beta-lactamase (MBL) genes, namely VIM, IMP, and NDM-1 were investigated. Methods: Following the isolation of 200 K. pneumoniae isolates from 650 clinical samples, the antibiotic resistance pattern of these isolates against different antibiotics was evaluated. The isolates resistant to imipenem, meropenem, and ertapenem were identified, and the presence of VIM, IMP, and NDM-1 genes was examined by using PCR methods. Results: The K. pneumoniae isolates exhibited different resistance patterns in response to various antibiotics. The frequency of VIM, IMP, and NDM-1 genes showed that 48 strains are resistant to imipenem, meropenem, and ertapenem in which 15.6% was positive for IMP, 2.42% for VIM, and 1.92% positive for NDM-1 gene. The isolates showed the highest antibiotic resistance to ampicillin (97.5%) and the lowest to meropenem (5.5%). Conclusion: Considering carbapenem antibiotics such as imipenem, meropenem, and ertapenem which are known to be among the most frequently used antibiotics for the treatment of K. pneumoniae infections and the involvement of MBL genes in this scenario, we aimed to screen and identify MBL genes responsible for the resistance of K. pneumoniae to imipenem, meropenem, and ertapenem. 
Full-Text [PDF 465 kb]   (1283 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2019/08/12 | Accepted: 2019/10/21 | Published: 2020/01/11

References
1. 1. Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2012; 55 (7): 943-50. [DOI:10.1093/cid/cis588]
2. KONG KF, Schneper L, Mathee K. Beta‐lactam antibiotics: from antibiosis to resistance and bacteriology. Apmis. 2010; 118 (1): 1-36. [DOI:10.1111/j.1600-0463.2009.02563.x]
3. Rahbar M, Monnavar K, Vatan KK, Fadaei-haq A, Shakerian F. Carbapenem resistance in gram-negative bacilli isolates in an Iranian 1000-bed Tertiary Hospital. Pak J Med Sci. 2008; 24 (4): 537-40.
4. Johnson JR, Russo TA. Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. International journal of medical microbiology. 2005; 295 (6-7): 383-404. [DOI:10.1016/j.ijmm.2005.07.005]
5. Reza Mirnejad SV. Antibiotic resistance patterns and the prevalence of ESBLs among strains of Acinetobacter baumannii isolated from clinical specimens. The Journal of Genes, Microbes and Immunity. 2013: 1-8. [DOI:10.5899/2013/jgmi-00002]
6. Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrobial agents and chemotherapy. 2010; 54 (3): 969-76. [DOI:10.1128/AAC.01009-09]
7. Daikos GL, Petrikkos P, Psichogiou M, Kosmidis C, Vryonis E, Skoutelis A, et al. Prospective observational study of the impact of VIM-1 metallo-β-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrobial agents and chemotherapy. 2009; 53 (5): 1868-73. [DOI:10.1128/AAC.00782-08]
8. Nordmann P, Poirel L, Toleman MA, Walsh TR. Does broad-spectrum β-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria? Journal of antimicrobial chemotherapy. 2011; 66 (4): 689-92. [DOI:10.1093/jac/dkq520]
9. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrobial agents and chemotherapy. 2007; 51 (10): 3471-84. [DOI:10.1128/AAC.01464-06]
10. Pfeifer Y, Witte W, Holfelder M, Busch J, Nordmann P, Poirel L. NDM-1-producing Escherichia coli in Germany. Antimicrobial agents and chemotherapy. 2011; 55 (3): 1318-9. [DOI:10.1128/AAC.01585-10]
11. Durante-Mangoni E, Zarrilli R. Global spread of drug-resistant Acinetobacter baumannii: molecular epidemiology and management of antimicrobial resistance. Future microbiology. 2011; 6 (4): 407-22. [DOI:10.2217/fmb.11.23]
12. Fallah F, Taherpour A, Hakemi Vala M, Hashemi A. Global spread of New Delhi metallo-beta-lactamase-1 (NDM-1). Iran J Clin Infect Dis. 2011; 6 (4): 171-77.
13. Roy S, Viswanathan R, Singh AK, Das P, Basu S. Sepsis in neonates due to imipenem-resistant Klebsiella pneumoniae producing NDM-1 in India. Journal of antimicrobial chemotherapy. 2011; 66 (6): 1411-3. [DOI:10.1093/jac/dkr068]
14. Bonomo RA. New Delhi metallo-β-lactamase and multidrug resistance: a global SOS? Clinical Infectious Diseases. 2011; 52 (4): 485-7. [DOI:10.1093/cid/ciq179]
15. Lee K, Park AJ, Kim MY, Lee HJ, Cho J-H, Kang JO, Yong D, Chong Y, group K. Metallo-β-lactamase-producing Pseudomonas spp. in Korea: high prevalence of isolates with VIM-2 type and emergence of isolates with IMP-1 type. Yonsei medical journal. 2009; 50 (3): 335-9. [DOI:10.3349/ymj.2009.50.3.335]
16. King D, Strynadka N. Crystal structure of New Delhi metallo‐β‐lactamase reveals molecular basis for antibiotic resistance. Protein Science. 2011; 20 (9): 1484-91. [DOI:10.1002/pro.697]
17. Lombardi G, Luzzaro F, Docquier JD, Riccio ML, Perilli M, Colì A, et al. Nosocomial infections caused by multidrug-resistant isolates of Pseudomonas putida producing VIM-1 metallo-β-lactamase. Journal of clinical microbiology. 2002; 40 (11): 4051-5. [DOI:10.1128/JCM.40.11.4051-4055.2002]
18. Wei WJ, Yang HF, Ye Y, Li JB. New Delhi Metallo-beta-Lactamase-Mediated Carbapenem Resistance: Origin, Diagnosis, Treatment and Public Health Concern. Chinese medical journal. 2015; 128 (14): 1969-76. [DOI:10.4103/0366-6999.160566]
19. Cunningham SA, Noorie T, Meunier D, Woodford N, Patel R. Rapid and simultaneous detection of genes encoding Klebsiella pneumoniae carbapenemase (blaKPC) and New Delhi metallo-beta-lactamase (blaNDM) in Gram-negative bacilli. Journal of clinical microbiology. 2013; 51 (4): 1269-71. [DOI:10.1128/JCM.03062-12]
20. Aditi FY, Rahman SS, Hossain MM. A Study on the Microbiological Status of Mineral Drinking Water. The open microbiology journal. 2017; 11: 31-44. [DOI:10.2174/1874285801711010031]
21. Queipo-Ortuno MI, De Dios Colmenero J, Macias M, Bravo MJ, Morata P. Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. Clinical and vaccine immunology: CVI. 2008; 15 (2): 293-6. [DOI:10.1128/CVI.00270-07]
22. Sanders CC, Sanders WE, Jr., Goering RV, Werner V. Selection of multiple antibiotic resistance by quinolones, beta-lactams, and aminoglycosides with special reference to cross-resistance between unrelated drug classes. Antimicrobial agents and chemotherapy. 1984; 26 (6): 797-801. [DOI:10.1128/AAC.26.6.797]
23. Pereira JL, Volcao LM, Klafke GB, Vieira RS, Goncalves CV, Ramis IB, da Silva PEA, von Groll A. Antimicrobial Resistance and Molecular Characterization of Extended-Spectrum beta-Lactamases of Escherichia coli and Klebsiella spp. Isolates from Urinary Tract Infections in Southern Brazil. Microbial drug resistance. 2019; 25 (2): 173-81. [DOI:10.1089/mdr.2018.0046]
24. Mensa J, Barberan J, Soriano A, Llinares P, Marco F, Canton R, et al. Antibiotic selection in the treatment of acute invasive infections by Pseudomonas aeruginosa: Guidelines by the Spanish Society of Chemotherapy. Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia. 2018; 31 (1): 78-100.
25. Poudel A, Hathcock T, Butaye P, Kang Y, Price S, Macklin K, et al. Multidrug-Resistant Escherichia coli, Klebsiella pneumoniae and Staphylococcus spp. in Houseflies and Blowflies from Farms and Their Environmental Settings. International journal of environmental research and public health. 2019; 16 (19). [DOI:10.3390/ijerph16193583]
26. Ganjeifar B, Zabihyan S, Baharvahdat H, Baradaran A. Multidrug-resistant Acinetobacter baumannii ventriculitis: a serious clinical challenge for neurosurgeons. British journal of neurosurgery. 2016; 30 (5): 589-90. [DOI:10.1080/02688697.2016.1206183]
27. Fukuoka T, Ohya S, Narita T, Katsuta M, Iijima M, Masuda N, et al. Activity of the carbapenem panipenem and role of the OprD (D2) protein in its diffusion through the Pseudomonas aeruginosa outer membrane. Antimicrobial agents and chemotherapy. 1993; 37 (2): 322-7. [DOI:10.1128/AAC.37.2.322]
28. Olaitan AO, Diene SM, Assous MV, Rolain JM. Genomic Plasticity of Multidrug-Resistant NDM-1 Positive Clinical Isolate of Providencia rettgeri. Genome biology and evolution. 2016; 8 (3): 723-8. [DOI:10.1093/gbe/evv195]
29. Shin S, Jeong SH, Lee H, Hong JS, Park MJ, Song W. Emergence of multidrug-resistant Providencia rettgeri isolates co-producing NDM-1 carbapenemase and PER-1 extended-spectrum beta-lactamase causing a first outbreak in Korea. Annals of clinical microbiology and antimicrobials. 2018; 17 (1): 20. [DOI:10.1186/s12941-018-0272-y]
30. Melgarejo JL, Cardoso MH, Pinto IB, Faria-Junior C, Mendo S, de Oliveira CE, et al. Identification, molecular characterization, and structural analysis of the blaNDM-1 gene/enzyme from NDM-1-producing Klebsiella pneumoniae isolates. The Journal of antibiotics. 2019; 72 (3): 155-63. [DOI:10.1038/s41429-018-0126-z]
31. Mukherjee S, Bhattacharjee A, Naha S, Majumdar T, Debbarma SK, Kaur H, et al. Molecular characterization of NDM-1-producing Klebsiella pneumoniae ST29, ST347, ST1224, and ST2558 causing sepsis in neonates in a tertiary care hospital of North-East India. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2019; 69: 166-75. [DOI:10.1016/j.meegid.2019.01.024]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.