Volume 6, Issue 1 (1-2018)                   JoMMID 2018, 6(1): 25-30 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hajihosein-Tabrizi A, Habibi M, Tabasi M, Asadi Karam M R. Distribution of Genes Encoding Iron Uptake Systems among the Escherichia coli Isolates from Diarrheal Patients of Iran . JoMMID. 2018; 6 (1) :25-30
URL: http://jommid.pasteur.ac.ir/article-1-161-en.html
Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (4026 Views)
Introduction: Diarrheagenic Escherichia coli (DEC) including enteropathogenic (EPEC), enteroaggregative (EAEC), enterotoxigenic (ETEC), and shiga toxin producing E. coli are among the most common agents of diarrhea. There are various classes of iron uptake receptors, but there is not much data on the presence of these iron receptors in DEC isolates. The present study aimed to evaluate the presence of iron receptor genes and also hemolysis activity in these isolates. Methods: Totally, 88 DEC isolates (EAEC, ETEC, STEC, and EPEC) from a previous microbial collection were included in this study. The isolates were tested for the production of hemolysin on blood agar plates. Then, Polymerase Chain Reaction (PCR) was used for detection of iron acquisition genes, including chuA, hma, iroN, fyuA, iutA and ireA. Results: Our results showed that 8 (66.7%), 25 (89.3%), 17 (44.4%) and 10 (83.4%) of EPEC, STEC, ETEC and EAEC isolates, respectively had hemolytic activity. All the EPEC isolates were negative for hma gene, and iroN and ireA genes were absent in the EAEC isolates. The frequency of chuA, hma and fyuA genes in the STEC and EAEC isolates was higher, whereas EPEC and ETEC isolates revealed a higher frequency of iroN gene than the STEC and EAEC isolates. Conclusion: This study reports the presence of various iron receptor genes with a significant hemolysin activity in DEC isolates from Iran. The presence of these genes may contribute to the increased pathogenesis of these isolates in the intestinal tract.
Full-Text [PDF 440 kb]   (1004 Downloads)    
Type of Study: Original article | Subject: Microbial pathogenesis
Received: 2018/05/7 | Accepted: 2018/06/2 | Published: 2018/08/27

1. ------------- 1. Ron EZ. Distribution and evolution of virulence factors in septicemic Escherichia coli. Int J Med Microbiol. 2010; 300 (6): 367-70. [DOI:10.1016/j.ijmm.2010.04.009] [PMID]
2. 2. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004; 2 (2): 123-40. [DOI:10.1038/nrmicro818] [PMID]
3. 3. Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev. 1998; 11 (1): 142-201. [PMID] [PMCID]
4. 4. Gomes TA, Elias WP, Scaletsky IC, Guth BE, Rodrigues JF, Piazza RM, et al. Diarrheagenic Escherichia coli. Braz J Microbiol. 2016; 47: 3-30. [DOI:10.1016/j.bjm.2016.10.015] [PMID] [PMCID]
5. 5. World Health Organization. World health statistics: a snapshot of global health. 2012.
6. 6. Mokomane M, Kasvosve I, Melo Ed, Pernica JM, Goldfarb DM. The global problem of childhood diarrhoeal diseases: emerging strategies in prevention and management. Ther Adv Infect Dis. 2018; 5 (1): 29-43. [DOI:10.1177/2049936117744429]
7. 7. Darbandi A, Owlia P, Bouzari S, Saderi H. Diarrheagenic Escherichia coli pathotypes frequency in Khuzestan province of Iran. Iran J Microbiol. 2016; 8 (6): 352-8. [PMID] [PMCID]
8. 8. Jafari A, Aslani M, Bouzari S. Escherichia coli: a brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran. Iran J Microbiol. 2012; 4 (3): 102-17. [PMID] [PMCID]
9. 9. Johnson JR, Russo TA, Tarr PI, Carlino U, Bilge SS, Vary JC, et al. Molecular epidemiological and phylogenetic associations of two novel putative virulence genes, iha and iroN E. coli, among Escherichia coli isolates from patients with urosepsis. Infect Immun. 2000; 68 (5): 3040-7. [DOI:10.1128/IAI.68.5.3040-3047.2000] [PMID] [PMCID]
10. 10. Ratledge C, Dover LG. Iron metabolism in pathogenic bacteria. Annu Rev Microbiol. 2000; 54 (1): 881-941. [DOI:10.1146/annurev.micro.54.1.881] [PMID]
11. 11. Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 2007; 71 (3): 413-51. [DOI:10.1128/MMBR.00012-07] [PMID] [PMCID]
12. 12. Caza M, Kronstad J. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol. 2013; 3: 1023. [DOI:10.3389/fcimb.2013.00080] [PMID] [PMCID]
13. 13. Okeke IN, Scaletsky IC, Soars EH, Macfarlane LR, Torres AG. Molecular epidemiology of the iron utilization genes of enteroaggregative Escherichia coli. J Clin Microbiol. 2004; 42 (1): 36-44. [DOI:10.1128/JCM.42.1.36-44.2004] [PMID] [PMCID]
14. 14. Sobieszczańska B. Distribution of genes encoding iron uptake systems among enteroaggregative Escherichia coli strains isolated from adults with irritable bowel syndrome. Clin Microbiol Infect. 2008; 14 (11): 1083-6. [DOI:10.1111/j.1469-0691.2008.02093.x] [PMID]
15. 15. Miri ST, Dashti A, Mostaan S, Kazemi F, Bouzari S. Identification of different Escherichia coli pathotypes in north and north-west provinces of Iran. Iran J Microbiol. 2017; 9 (1): 33-7. [PMID] [PMCID]
16. 16. Lei L, Rehman MU, Huang S, Zhang L, Wang L, Mehmood K, et al. Antimicrobial resistance and prevalence of diarrheagenic Escherichia coli (DEC), in diarrheic yaks of Tibetan Plateau, China. Acta Trop. 2018; 182: 111-4. [DOI:10.1016/j.actatropica.2018.02.022] [PMID]
17. 17. Polgárová K, Behuliak M, Celec P. Effect of saliva processing on bacterial DNA extraction. New Microbiol. 2010; 33 (4): 373-9. [PMID]
18. 18. Ratledge C. Iron metabolism and infection. Food Nutr Bull. 2007; 28 (Suppl 4): S515-S23. [DOI:10.1177/15648265070284S405] [PMID]
19. 19. Pi H, Jones SA, Mercer LE, Meador JP, Caughron JE, Jordan L, et al. Role of catecholate siderophores in gram-negative bacterial colonization of the mouse gut. PLoS One. 2012; 7 (11): e50020. [DOI:10.1371/journal.pone.0050020] [PMID] [PMCID]
20. 20. Russo TA, Carlino UB, Johnson JR. Identification of a New Iron-Regulated Virulence Gene, ireA, in an Extraintestinal Pathogenic Isolate of Escherichia coli. Infect Immun. 2001; 69 (10): 6209-16. [DOI:10.1128/IAI.69.10.6209-6216.2001] [PMID] [PMCID]
21. 21. Braun V. Iron uptake mechanisms and their regulation in pathogenic bacteria. Int J Med Microbiol. 2001; 291 (2): 67-79. [DOI:10.1078/1438-4221-00103] [PMID]
22. 22. Schubert S, Rakin A, Karch H, Carniel E, Heesemann J. Prevalence of the "High-Pathogenicity Island" of Yersinia Species among Escherichia coli Strains That Are Pathogenic to Humans. Infect Immun. 1998; 66 (2): 480-5. [PMID] [PMCID]
23. 23. Hancock V, Ferrieres L, Klemm P. The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infections Escherichia coli in human urine. Microbiol. 2008; 154 (1): 167-75. [DOI:10.1099/mic.0.2007/011981-0] [PMID]
24. 24. Hantke K, Nicholson G, Rabsch W, Winkelmann G. Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci USA. 2003; 100 (7): 3677-82. [DOI:10.1073/pnas.0737682100] [PMID] [PMCID]
25. 25. Nagy G, Dobrindt U, Kupfer M, Emödy L, Karch H, Hacker J. Expression of Hemin Receptor Molecule ChuA Is Influenced by RfaH in Uropathogenic Escherichia coli Strain 536. Infect Immun. 2001; 69 (3): 1924-8. [DOI:10.1128/IAI.69.3.1924-1928.2001] [PMID] [PMCID]
26. 26. Regua‐Mangia AH, Irino K, da Silva Pacheco R, Pimentel Bezerra RM, Santos Périssé AR, Teixeira LM. Molecular characterization of uropathogenic and diarrheagenic Escherichia coli pathotypes. J Basic Microbiol. 2010; 50 (Suppl 1): S107-15. [DOI:10.1002/jobm.200900364] [PMID]
27. 27. Law D, Wilkie K, Freeman R, Gould F. The iron uptake mechanisms of enteropathogenic Escherichia coli: the use of haem and haemoglobin during growth in an iron-limited environment. J Med Microbiol. 1992; 37 (1): 15-21. [DOI:10.1099/00222615-37-1-15] [PMID]
28. 28. Balière C, Rincé A, Delannoy S, Fach P, Gourmelon M. Molecular profiling of STEC and EPEC strains isolated from French coastal environments. Appl Environ Microbiol. 2016: 82 (13): 3913-27. [DOI:10.1128/AEM.00271-16] [PMID] [PMCID]
29. 29. Bosilevac JM, Koohmaraie M. Prevalence and characterization of non-O157 Shiga toxin-producing Escherichia coli isolates from commercial ground beef in the United States. Appl Environ Microbiol. 2011; 77 (6): 2103-12. [DOI:10.1128/AEM.02833-10] [PMID] [PMCID]
30. 30. Torres AG, Payne SM. Haem iron‐transport system in enterohaemorrhagic Escherichia coli O157: H7. Mol Microbiol. 1997; 23 (4): 825-33. [DOI:10.1046/j.1365-2958.1997.2641628.x]
31. 31. Guerra JA, Romero-Herazo YC, Arzuza O, Gómez-Duarte OG. Phenotypic and genotypic characterization of enterotoxigenic Escherichia coli clinical isolates from Northern Colombia, South America. BioMed Res Int. 2014; 2014: 1-11. [DOI:10.1155/2014/236260] [PMID] [PMCID]
32. 32. Johnson JR, Stell AL. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis. 2000; 181 (1): 261-72. [DOI:10.1086/315217] [PMID]
33. 33. Elliott SJ, Srinivas S, Albert MJ, Alam K, Robins-Browne RM, Gunzburg ST, et al. Characterization of the roles of hemolysin and other toxins in enteropathy caused by alpha-hemolytic Escherichia coli linked to human diarrhea. Infect Immun. 1998; 66 (5): 2040-51. [PMID] [PMCID]
34. 34. Gomes T, Abe CM, Marques L. Detection of HeLa cell-detaching activity and alpha-hemolysin production in enteroaggregative Escherichia coli strains isolated from feces of Brazilian children. J Clin Microbiol. 1995; 33 (12): 3364. [PMID] [PMCID]
35. 35. Taghadosi R, Shakibaie MR, Alizade H, Hosseini-Nave H, Askari A, Ghanbarpour R. Serogroups, subtypes and virulence factors of shiga toxin-producing Escherichia coli isolated from human, calves and goats in Kerman, Iran. Gastroenterol Hepatol Bed Bench. 2018; 11 (1): 60-7. [PMID] [PMCID]
36. 36. Lorenz SC, Son I, Maounounen-Laasri A, Lin A, Fischer M, Kase JA. Prevalence of hemolysin genes and comparison of ehxA subtype patterns in Shiga toxin-producing Escherichia coli (STEC) and non-STEC strains from clinical, food, and animal sources. Appl Environ Microbiol. 2013; 79 (20): 6301-11. [DOI:10.1128/AEM.02200-13] [PMID] [PMCID]
37. 37. Gound SS, Mondal R. Hemolytic Activity of Shiga Toxin Producing Escherichia coli. IJETSR. 2017; 4 (12): 454-7.
38. 38. Ferro TAF, Moraes FC, da Silva AM, Porcy C, Soares LA, Monteiro CA, et al. Characterization of virulence factors in Enteroaggregative and atypical Enteropathogenic Escherichia coli strains isolated from children with diarrhea. Adv Infect Dis. 2012; 2 (4): 135. [DOI:10.4236/aid.2012.24022]
39. 39. Sato JPH, Takeuti KL, Andrade MR, Koerich PK, Tagliari V, Bernardi ML, et al. Virulence profiles of enterotoxigenic Escherichia coli isolated from piglets with post-weaning diarrhea and classification according to fecal consistency. Pesqui Vet Bras. 2016; 36 (4): 253-7. [DOI:10.1590/S0100-736X2016000400001]

Add your comments about this article : Your username or Email:

Send email to the article author

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.