Volume 6, Issue 1 (1-2018)                   JoMMID 2018, 6(1): 13-19 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rohani M, Papizadeh M, Pourshafie M R. Correlation of Biofilm Formation and Caco-2 Cell Attachment Properties in Colonization Ability of Acid-Bile Resistant Fecal Lactobacillus plantarum Isolates . JoMMID 2018; 6 (1) :13-19
URL: http://jommid.pasteur.ac.ir/article-1-152-en.html
Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (6168 Views)
Introduction: The strain-specific capabilities of lactobacilli are critical for gut colonization. In this study, we evaluated various colonization determinants of 42 fecal Lactobacillus plantarum isolates from the healthy human fecal samples. Methods: We investigated the attachment to the Caco-2 cell line, biofilm formation ability and cell surface activity of the isolates. Such properties were comparatively studied, and the regression between these features was statistically analyzed. Results: Among our results 18 (42.9%) were non-adhesive, 11 (26.2%) moderate adhesive and 13 (31%) strongly adhesive. The results showed that some isolates were significantly capable of biofilm formation. The highest rate of auto-aggregation was recorded for L. plantarum isolate RPR 240 (58%). Conclusion: Our results revealed a high degree of variability among colonization characteristics of the L. plantarum isolates indicating strain-specificity. Also, the colonization properties of the potential probiotic isolates had no significant correlation with each other. Our results confirmed the necessity of further in vivo colonization assays for selection of probiotic candidates.
Full-Text [PDF 369 kb]   (2793 Downloads)    
Type of Study: Original article | Subject: Host-pathogen interactions and susceptibility factors
Received: 2018/02/18 | Accepted: 2018/05/28 | Published: 2018/08/27

References
1. ------------- 1. Papizadeh M, Nahrevanian H, Rohani M, Hosseini SN, Shojaosadati SA. Lactobacillus rhamnosus Gorbach-Goldin (GG): A Top Well-Researched Probiotic Strain. J Med Bacteriol. 2016; 5 (5-6): 46-59.
2. 2. Noohi N, Ebrahimipour G, Rohani M, Talebi M, Pourshafie M. Evaluation of potential probiotic characteristics and antibacterial effects of strains of Pediococcus species isolated from broiler chickens. Br Poult Sci. 2016; 57 (3): 317-23. [DOI:10.1080/00071668.2016.1169247] [PMID]
3. 3. Hugon P, Lagier J-C, Colson P, Bittar F, Raoult D. Repertoire of human gut microbes. Microb Pathog. 2016; 106: 103-12. [DOI:10.1016/j.micpath.2016.06.020] [PMID]
4. 4. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T, Pérez-Mu-oz ME, et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev. 2017; 41(Supp_1): S27-S48.
5. 5. Scheinbach S. Probiotics: functionality and commercial status. Biotechnol Adv. 1998; 16 (3): 581-608. [DOI:10.1016/S0734-9750(98)00002-0]
6. 6. Shah NP, Ali JF, Ravula RR. Populations of Lactobacillus acidophilus, Bifidobacterium spp., and Lactobacillus casei in commercial fermented milk products. Biosci Microflora. 2000; 19 (1): 35-9. [DOI:10.12938/bifidus1996.19.35]
7. 7. Kosin B, Rakshit SK. Microbial and processing criteria for production of probiotics: a review. Food Technol Biotechnol. 2006; 44 (3): 371-9.
8. 8. Papizadeh M, Pourshafie MR. Niche-specific genome evolution in gastrointestinal probiotics. Biomed J Sci & Tech Res. 2017; 1 (3).
9. 9. Govender M, Choonara YE, Kumar P, du Toit LC, van Vuuren S, Pillay V. A review of the advancements in probiotic delivery: Conventional vs. non-conventional formulations for intestinal flora supplementation. Aaps PharmSciTech. 2014; 15 (1): 29-43. [DOI:10.1208/s12249-013-0027-1] [PMID] [PMCID]
10. 10. Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, et al. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol. 2015; 6: 58. [DOI:10.3389/fmicb.2015.00058] [PMID] [PMCID]
11. 11. Noohi N, Ebrahimipour G, Rohani M, Talebi M, Pourshafie MR. Phenotypic characteristics and probiotic potentials of Lactobacillus spp. isolated from poultry. Jundishapur J Microbiol. 2014; 7 (9): e17824. [DOI:10.5812/jjm.17824] [PMID] [PMCID]
12. 12. Rohani M, Noohi N, Talebi M, Katouli M, Pourshafie MR. Highly heterogeneous probiotic Lactobacillus species in healthy iranians with low functional activities. PloS one. 2015; 10 (12): e0144467. [DOI:10.1371/journal.pone.0144467] [PMID] [PMCID]
13. 13. Abriouel H, Pérez Montoro B, Casimiro-Soriguer CS, Pérez Pulido AJ, Knapp CW, Caballero Gómez N, et al. Insight into potential probiotic markers predicted in Lactobacillus pentosus MP-10 genome sequence. Front Microbiol. 2017; 8: 891. [DOI:10.3389/fmicb.2017.00891] [PMID] [PMCID]
14. 14. Mukherjee S, Ramesh A. Dual-label flow cytometry-based host cell adhesion assay to ascertain the prospect of probiotic Lactobacillus plantarum in niche-specific antibacterial therapy. Microbiology. 2017; 163 (12): 1822-34. [DOI:10.1099/mic.0.000561] [PMID]
15. 15. Choi J-K, Lim Y-S, Kim H-J, Hong Y-H, Ryu B-Y, Kim G-B. Screening and characterization of Lactobacillus casei MCL strain exhibiting immunomodulation activity. Korean J Food Sci Anim Resour. 2015; 35 (1): 91-100. [PMID] [PMCID]
16. 16. Karthikeyan T, Pravin M, Muthusamy VS, Raja RB, Lakshmi BS. In vitro investigation of the immunomodulatory potential of probiotic Lactobacillus casei. Probiotics Antimicrob Proteins. 2013; 5 (1): 51-8. [DOI:10.1007/s12602-012-9122-y] [PMID]
17. 17. Evivie SE, Huo G-C, Igene JO, Bian X. Some current applications, limitations and future perspectives of lactic acid bacteria as probiotics. Food Nutr Res. 2017; 61 (1): 1318034. [DOI:10.1080/16546628.2017.1318034] [PMID] [PMCID]
18. 18. Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017; 9 (9): 1021. [DOI:10.3390/nu9091021] [PMID] [PMCID]
19. 19. Ramos CL, Thorsen L, Schwan RF, Jespersen L. Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol. 2013; 36 (1): 22-9. [DOI:10.1016/j.fm.2013.03.010] [PMID]
20. 20. Sebastian AP, Keerthi T. Adhesion and cellsurface properties of wild species of spore formers against enteric pathogens. Asian Pac J Trop Med. 2013; 6 (2): 110-4. [DOI:10.1016/S1995-7645(13)60004-8]
21. 21. Carasi P, Ambrosis NM, De Antoni GL, Bressollier P, Urdaci MC, de los Angeles Serradell M. Adhesion properties of potentially probiotic Lactobacillus kefiri to gastrointestinal mucus. J Dairy Res. 2014; 81 (1): 16-23. [DOI:10.1017/S0022029913000526] [PMID]
22. 22. Lee HK, Choi S-H, Lee CR, Lee SH, Park MR, Kim Y, et al. Screening and characterization of lactic acid bacteria strains with anti-inflammatory activities through in vitro and Caenorhabditis elegans model testing. Korean J Food Sci Anim Resour. 2015; 35 (1): 91-100. [DOI:10.5851/kosfa.2015.35.1.91] [PMID] [PMCID]
23. 23. Duary RK, Rajput YS, Batish VK, Grover S. Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells. Indian J Med Res. 2011; 134 (5): 664-71. [DOI:10.4103/0971-5916.90992] [PMID] [PMCID]
24. 24. Feighery LM, Smith P, O'Mahony L, Fallon PG, Brayden DJ. Effects of Lactobacillus salivarius 433118 on intestinal inflammation, immunity status and in vitro colon function in two mouse models of inflammatory bowel disease. Dig Dis Sci. 2008; 53 (9): 2495-506. [DOI:10.1007/s10620-007-0157-y] [PMID]
25. 25. Van Tassell ML, Miller MJ. Lactobacillus adhesion to mucus. Nutrients. 2011; 3 (5): 613-36. [DOI:10.3390/nu3050613] [PMID] [PMCID]
26. 26. Kwon HS, Yang EH, Yeon SW, Kang BH, Kim TY. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species‐specific primers based on the region extending from 16S rRNA through 23S rRNA. FEMS Microbiol Lett. 2004; 239 (2): 267-75. [DOI:10.1016/j.femsle.2004.08.049] [PMID]
27. 27. Jacobsen CN, Nielsen VR, Hayford A, Møller P, Michaelsen K, Paerregaard A, et al. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol. 1999; 65 (11): 4949-56. [PMID] [PMCID]
28. 28. Lebeer S, Verhoeven TL, Vélez MP, Vanderleyden J, De Keersmaecker SC. Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol. 2007; 73 (21): 6768-75. [DOI:10.1128/AEM.01393-07] [PMID] [PMCID]
29. 29. Xu H, Jeong H, Lee H, Ahn J. Assessment of cell surface properties and adhesion potential of selected probiotic strains. Lett Appl Microbiol. 2009; 49 (4): 434-42. [DOI:10.1111/j.1472-765X.2009.02684.x] [PMID]
30. 30. Castillo NA, Perdigón G, de LeBlanc AdM. Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiol. 2011; 11 (1): 177. [DOI:10.1186/1471-2180-11-177] [PMID] [PMCID]
31. 31. Liévin-Le Moal V, Servin AL. Anti-Infective Activities of Lactobacillus Strains in the Human Intestinal Microbiota: from Probiotics to Gastrointestinal Anti-Infectious Biotherapeutic Agents. Clin Microbiol Rev. 2014; 27 (2): 167-99. [DOI:10.1128/CMR.00080-13] [PMID] [PMCID]
32. 32. Hautefort I. Adhesion to the digestive mucosa is not sufficient for durable persistence of different Lactobacillus fermentum strains in the digestive tract of mice. Microb Ecol Health Dis. 2000; 12 (1): 48-56. [DOI:10.1080/089106000435590]
33. 33. Noohi N, Ebrahimipour G, Rohani M, Talebi M, Pourshafie MR. Evaluation of potential probiotic characteristics and antibacterial effects of strains of Pediococcus species isolated from broiler chickens. British Poultry Sci. 2016; 57 (3): 317-23. [DOI:10.1080/00071668.2016.1169247] [PMID]
34. 34. Polak-Berecka M, Was´ko A, Paduch R, Skrzypek T, Sroka-Bartnicka A. The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus. Antonie van Leeuwenhoek. 2014; 106 (4): 751-62. [DOI:10.1007/s10482-014-0245-x] [PMID] [PMCID]
35. 35. Bao Y, Zhang Y, Zhang Y, Liu Y, Wang S, Dong X, et al. Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control. 2010; 21 (5): 695-701. [DOI:10.1016/j.foodcont.2009.10.010]
36. 36. Chauviere G, Coconnier M-H, Kerneis S, Darfeuille-Michaud A, Joly B, Servin AL. Competitive exclusion of diarrheagenic Escherichia coli (ETEC) from human enterocyte-like Caco-2 cells by heat-killed Lactobacillus. FEMS Microbiol Lett. 1992; 91 (3): 213-7. [DOI:10.1016/0378-1097(92)90700-X]
37. 37. Nejati F, Oelschlaeger T. In Vitro characterization of Lactococcus lactis strains Isolated from Iranian Traditional Dairy Products as a Potential Probiotic. App Food Biotechnol. 2015; 3 (1): 43-51.
38. 38. Van den Abbeele P, Roos S, Eeckhaut V, Mackenzie DA, Derde M, Verstraete W, et al. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb Biotechnol. 2012; 5 (1): 106-15. [DOI:10.1111/j.1751-7915.2011.00308.x] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.