1. Naidu A, Bidlack W, Clemens R. Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr. 1999; 39 (1): 13-126. [
DOI:10.1080/10408699991279187] [
PMID]
2. Gasbarrini G, Bonvicini F, Gramenzi A. Probiotics history. J Clin Gastroenterol. 2016; 50 (Suppl 2): S116-9. [
DOI:10.1097/MCG.0000000000000697] [
PMID]
3. Vinderola G, Ouwehand A, Salminen S, von Wright A. Lactic acid bacteria: microbiological and functional aspects. 5th ed. Boca Raton: CRC Press; 2019. [
DOI:10.1201/9780429057465]
4. Pontes DS, de Azevedo MSP, Chatel JM, Langella P, Azevedo V, Miyoshi A. Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif. 2011;79 (2): 165-75. [
DOI:10.1016/j.pep.2011.06.005] [
PMID]
5. Kok J, van Gijtenbeek LA, de Jong A, van der Meulen SB, Solopova A, Kuipers OP. The evolution of gene regulation research in Lactococcus lactis. FEMS Microbiol Rev. 2017; 41 (Supp 1): S220-43. [
DOI:10.1093/femsre/fux028] [
PMID]
6. Bahey-El-Din M, Gahan CG, Griffin BT. Lactococcus lactis as a cell factory for delivery of therapeutic proteins. Curr Gene Ther. 2010; 10 (1): 34-45. [
DOI:10.2174/156652310790945557] [
PMID]
7. Villatoro-Hernández J, Kuipers OP, Saucedo-Cárdenas O, Montes-de-Oca-Luna R. Heterologous protein expression by Lactococcus lactis. In: Mendez-Vilas A, editor. Recombinant gene expression. 3rd ed. New York: Springer; 2012. p. 155-65. [
DOI:10.1007/978-1-61779-433-9_8] [
PMID]
8. Giraffa G. Selection and design of lactic acid bacteria probiotic cultures. Eng Life Sci. 2012; 12 (4): 391-8. [
DOI:10.1002/elsc.201100118]
9. de Arauz LJ, Jozala AF, Mazzola PG, Penna TCV. Nisin biotechnological production and application: a review. Trends Food Sci Technol. 2009; 20 (3-4): 146-54. [
DOI:10.1016/j.tifs.2009.01.056]
10. Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermúdez-Humarán LG, et al. Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact. 2005; 4 (1): 2. [
DOI:10.1186/1475-2859-4-2] [
PMID] [
PMCID]
11. Henriksen CM, Nilsson D, Hansen S, Johansen E. Industrial applications of genetically modified microorganisms: gene technology at Chr. Hansen A/S. Int Dairy J. 1999; 9 (1): 17-23. [
DOI:10.1016/S0958-6946(99)00040-0]
12. Song AA-L, In LL, Lim SHE, Rahim RA. A review on Lactococcus lactis: from food to factory. Microb Cell Fact. 2017; 16: 55. [
DOI:10.1186/s12934-017-0669-x] [
PMID] [
PMCID]
13. Singh SK, Tiendrebeogo RW, Chourasia BK, Kana IH, Singh S, Theisen M. Lactococcus lactis provides an efficient platform for production of disulfide-rich recombinant proteins from Plasmodium falciparum. Microb Cell Fact. 2018; 17 (1): 55. [
DOI:10.1186/s12934-018-0902-2] [
PMID] [
PMCID]
14. Poquet I, Saint V, Seznec E, Simoes N, Bolotin A, Gruss A. HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol. 2000; 35 (5): 1042-51. [
DOI:10.1046/j.1365-2958.2000.01757.x] [
PMID]
15. Samazan F, Rokbi B, Seguin D, Telles F, Gautier V, Richarme G, et al. Production, secretion and purification of a correctly folded staphylococcal antigen in Lactococcus lactis. Microb Cell Fact. 2015; 14: 104. [
DOI:10.1186/s12934-015-0271-z] [
PMID] [
PMCID]
16. Sriraman K, Jayaraman G. HtrA is essential for efficient secretion of recombinant proteins by Lactococcus lactis. Appl Environ Microbiol. 2008; 74 (23): 7442-6. [
DOI:10.1128/AEM.00638-08] [
PMID] [
PMCID]
17. K King MS, Boes C, Kunji ER. Membrane protein expression in Lactococcus lactis. In: Methods in enzymology. New York, NY: Elsevier; 2015. p.77-97. [
DOI:10.1016/bs.mie.2014.12.009] [
PMID]
18. Davarpanah E, Seyed N, Bahrami F, Rafati S, Safaralizadeh R, Taheri T. Lactococcus lactis expressing sand fly PpSP15 salivary protein confers long-term protection against Leishmania major in BALB/c mice. PLoS Negl Trop Dis. 2020; 14: e0007939. [
DOI:10.1371/journal.pntd.0007939] [
PMID] [
PMCID]
19. Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010; 2 (5): a000414. [
DOI:10.1101/cshperspect.a000414] [
PMID] [
PMCID]
20. Azizpour M, Hosseini SD, Jafari P, Akbary N. Lactococcus lactis: a new strategy for vaccination. Avicenna J Med Biotechnol. 2017; 9 (4): 163-8.
21. Azizpour M, Hosseini S, Jafari P, Akbary N. Lactococcus lactis as a live delivery vector. Vaccine Res. 2016; 3 (3): 39-43. [
DOI:10.18869/acadpub.vacres.3.7.1]
22. Bahey-El-Din M, Gahan CG. Lactococcus lactis-based vaccines: current status and future perspectives. Hum Vaccin. 2011; 7 (1): 106-9. [
DOI:10.4161/hv.7.1.13631] [
PMID]
23. Zhu D, Liu F, Xu H, Bai Y, Zhang X, Saris PEJ, et al. Isolation of strong constitutive promoters from Lactococcus lactis subsp. lactis N8. FEMS Microbiol Lett. 2015; 362 (16): fnv107. [
DOI:10.1093/femsle/fnv107] [
PMID]
24. Xiong Z-Q, Wei Y-Y, Kong L-H, Song X, Yi H-X, Ai L-Z. An inducible CRISPR/dCas9 gene repression system in Lactococcus lactis. J Dairy Sci. 2020; 103 (1): 161-5. [
DOI:10.3168/jds.2019-17346] [
PMID]
25. Maccormick CA, Griffin HG, Gasson MJJFml. Construction of a food-grade host/vector system for Lactococcus lactis based on the lactose operon. FEMS Microbiol Lett. 1995; 127 (1-2): 105-9. [
DOI:10.1111/j.1574-6968.1995.tb07457.x] [
PMID]
26. Takala T, Saris P. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Appl Microbiol Biotechnol. 2002; 59 (4-5): 467-71. [
DOI:10.1007/s00253-002-1034-4] [
PMID]
27. de Castro CP, Drumond MM, Batista VL, Nunes A, Mancha-Agresti P, Azevedo VJFim. Vector development timeline for mucosal vaccination and treatment of disease using Lactococcus lactis and design approaches of next generation food grade plasmids. Front Microbiol. 2018; 9: 1805. [
DOI:10.3389/fmicb.2018.01805] [
PMID] [
PMCID]
28. Djordjevic GM, Klaenhammer TR. Inducible gene expression systems in Lactococcus lactis. Mol Biotechnol. 1998; 9 (2): 127-39. [
DOI:10.1007/BF02760814] [
PMID]
29. Van Asseldonk M, Simons A, Visser H, de Vos WM, Simons GJJoB. Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene. J Bacteriol. 1993; 175 (6): 1637-44. [
DOI:10.1128/jb.175.6.1637-1644.1993] [
PMID] [
PMCID]
30. Llull D, Son O, Blanié S, Briffotaux J, Morello E, Rogniaux H, et al. Lactococcus lactis ZitR is a zinc-responsive repressor active in the presence of low, nontoxic zinc concentrations in vivo. J Bacteriol. 2011; 193 (8): 1919-29. [
DOI:10.1128/JB.01109-10] [
PMID] [
PMCID]
31. Mu D, Montalbán-López M, Masuda Y, Kuipers OP. Zirex: a novel zinc-regulated expression system for Lactococcus lactis. Appl Environ Microbiol. 2013; 79 (14): 4503-8. [
DOI:10.1128/AEM.00866-13] [
PMID] [
PMCID]
32. Llull D, Poquet I. New expression system tightly controlled by zinc availability in Lactococcus lactis. Appl Environ Microbiol. 2004; 70 (9): 5398-406. [
DOI:10.1128/AEM.70.9.5398-5406.2004] [
PMID] [
PMCID]
33. Tavares LM, de Jesus LC, da Silva TF, Barroso FAL, Batista VL, Coelho-Rocha ND, et al. Novel strategies for efficient production and delivery of live biotherapeutics and biotechnological uses of Lactococcus lactis: the lactic acid bacterium model. Front Bioeng Biotechnol. 2020; 8: 517166. [
DOI:10.3389/fbioe.2020.517166] [
PMID] [
PMCID]
34. Israelsen H, Madsen SM, Vrang A, Hansen EB, Johansen E. Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Appl Environ Microbiol. 1995; 61 (7): 2540-7. [
DOI:10.1128/aem.61.7.2540-2547.1995] [
PMID] [
PMCID]
35. van Rooijen RJ, Gasson MJ, De Vos WM. Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity. J Bacteriol. 1992; 174 (7): 2273-80. [
DOI:10.1128/jb.174.7.2273-2280.1992] [
PMID] [
PMCID]
36. Griffin H, Gasson M. The regulation of expression of the Lactococcus lactis lactose operon. Lett Appl Microbiol. 1993; 17 (2): 92-6. [
DOI:10.1111/j.1472-765X.1993.tb00379.x] [
PMID]
37. Bidart GN, Rodríguez-Díaz J, Pérez-Martínez G, Yebra MJ. The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 N-acetyllactosamine. Sci Rep. 2018; 8 (1): 7152. [
DOI:10.1038/s41598-018-25660-w] [
PMID] [
PMCID]
38. Geldart K, Borrero J, Kaznessis YN. Chloride-inducible expression vector for delivery of antimicrobial peptides targeting antibiotic-resistant Enterococcus faecium. Appl Environ Microbiol. 2015; 81 (11): 3889-97. [
DOI:10.1128/AEM.00227-15] [
PMID] [
PMCID]
39. Mierau I, Kleerebezem M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol. 2005; 68 (6): 705-17. [
DOI:10.1007/s00253-005-0107-6] [
PMID]
40. Yagnik B, Patel S, Dave M, Sharma D, Padh H, Desai P. Factors affecting inducible expression of outer membrane protein A (OmpA) of Shigella dysenteriae type-1 in Lactococcus lactis using nisin inducible controlled expression (NICE). Indian J Microbiol. 2016; 56 (1): 80-7. [
DOI:10.1007/s12088-015-0556-2] [
PMID] [
PMCID]
41. Kuipers OP, Beerthuyzen MM, de Ruyter PG, Luesink EJ, de Vos WM. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem. 1995; 270 (45): 27299-304. [
DOI:10.1074/jbc.270.45.27299] [
PMID]
42. Chen Z, Zhang Q, Wang H, Li J, Zhang X. A novel Lactococcus lactis-based vaccine expressing AMA1 and EtMIC2 antigens induces protective immunity against Eimeria tenella infection in chickens. Vet Parasitol. 2022; 302: 109660.
43. Kunji ER, Slotboom D-J, Poolman B. Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim Biophys Acta. 2003; 1610 (1): 97-108. [
DOI:10.1016/S0005-2736(02)00712-5] [
PMID]
44. Nielsen H, Engelbrecht J, Brunak S, Von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997; 10 (1): 1-6. [
DOI:10.1093/protein/10.1.1] [
PMID]
45. Hernandez-Valdes JA, Huang C, Kok J, Kuipers OP. Another breaker of the wall: the biological function of the Usp45 protein of Lactococcus lactis. Appl Environ Microbiol. 2020; 86 (16): e00903-20. [
DOI:10.1128/AEM.00903-20] [
PMID] [
PMCID]
46. van Asseldonk M, Rutten G, Oteman M, Siezen RJ, de Vos WM, Simons G. Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene. 1990; 95 (1): 155-60. [
DOI:10.1016/0378-1119(90)90428-T] [
PMID]
47. Luerce TD, Azevedo MSP, LeBlanc JG, Azevedo V, Miyoshi A, Pontes DS. Recombinant Lactococcus lactis fails to secrete bovine chymosine. Bioengineered. 2014; 5 (6): 363-70. [
DOI:10.4161/bioe.36327] [
PMID] [
PMCID]
48. Roslan AM, Kamil AM, Chandran C, Song AA-L, Yusoff K, Rahim RA. Secretion of recombinant xylanase in Lactococcus lactis using signal peptides Usp45 and Spk1. Biotechnol Lett. 2020; 42 (9): 1727-33. [
DOI:10.1007/s10529-020-02894-1] [
PMID]
49. Back A, Borges F, Mangavel C, Paris C, Rondags E, Kapel R, et al. Recombinant pediocin in Lactococcus lactis: increased production by propeptide fusion and improved potency by co-production with PedC. Microb Biotechnol. 2016; 9 (4): 466-77. [
DOI:10.1111/1751-7915.12285] [
PMID] [
PMCID]
50. Lim PY, Tan LL, Ow DS-W, Wong FT. A propeptide toolbox for secretion optimization of Flavobacterium meningosepticum endopeptidase in Lactococcus lactis. Microb Cell Fact. 2017; 16 (1): 221. [
DOI:10.1186/s12934-017-0836-0] [
PMID] [
PMCID]
51. Mao R, Wu D, Wang Y. Surface display on lactic acid bacteria without genetic modification: strategies and applications. Appl Microbiol Biotechnol. 2016; 100 (22): 9407-21. [
DOI:10.1007/s00253-016-7842-8] [
PMID]
52. Kontinen VP, Sarvas M. The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol Microbiol. 1993; 8 (4): 727-37. [
DOI:10.1111/j.1365-2958.1993.tb01616.x] [
PMID]
53. Freudl R. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb Cell Fact. 2018; 17: 52. [
DOI:10.1186/s12934-018-0901-3] [
PMID] [
PMCID]
54. Low KO, Muhammad Mahadi N, Md. Illias R. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl Microbiol Biotechnol. 2013; 97: 3811-26. [
DOI:10.1007/s00253-013-4831-z] [
PMID]
55. Davarpanah E, Seyed N, Bahrami F, Rafati S, Safaralizadeh R, Taheri T. Lactococcus lactis expressing sand fly PpSP15 salivary protein confers long-term protection against Leishmania major in BALB/c mice. PLoS Negl Trop Dis. 2020; 14 (1): e0007939. [
DOI:10.1371/journal.pntd.0007939] [
PMID] [
PMCID]
56. Yam KK, Hugentobler F, Pouliot P, Stern AM, Lalande J-D, Matlashewski G et al. Generation and evaluation of A2-expressing Lactococcus lactis live vaccines against Leishmania donovani in BALB/c mice. J Med Microbiol. 2011; 60 (9): 1248-60. [
DOI:10.1099/jmm.0.029959-0] [
PMID]
57. Osaki M, Takamatsu D, Shimoji Y, Sekizaki T. Characterization of Streptococcus suis genes encoding proteins homologous to sortase of gram-positive bacteria. J Bacteriol. 2002; 184 (4): 971-82. [
DOI:10.1128/jb.184.4.971-982.2002] [
PMID] [
PMCID]
58. Visweswaran GRR, Leenhouts K, van Roosmalen M, Kok J, Buist G. Exploiting the peptidoglycan-binding motif, LysM, for medical and industrial applications. Appl Microbiol Biotechnol. 2014; 98 (10): 4331-45. [
DOI:10.1007/s00253-014-5633-7] [
PMID] [
PMCID]
59. Michon C, Langella P, Eijsink V, Mathiesen G, Chatel J-M. Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications. Microb Cell Fact. 2016; 15: 70. [
DOI:10.1186/s12934-016-0468-9] [
PMID] [
PMCID]
60. Buist G. AcmA of Lactococcus lactis, a cell-binding major autolysin. Groningen: University Library Groningen; 1997.
61. B Bosma T, Kanninga R, Neef J, Audouy SA, van Roosmalen ML, Steen A, et al. Novel surface display system for proteins on non-genetically modified gram-positive bacteria. Appl Environ Microbiol. 2006; 72 (1): 880-9. [
DOI:10.1128/AEM.72.1.880-889.2006] [
PMID] [
PMCID]
62. van Roosmalen ML, Kanninga R, El Khattabi M, Neef J, Audouy S, Bosma T, et al. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria. Methods. 2006; 38 (2): 144-9. [
DOI:10.1016/j.ymeth.2005.09.015] [
PMID]
63. Bermúdez-Humarán LG. Lactococcus lactis as a live vector for mucosal delivery of therapeutic proteins. Hum Vaccin. 2009; 5 (4): 264-7. [
DOI:10.4161/hv.5.4.7553] [
PMID]
64. Visweswaran GRR, Steen A, Leenhouts K, Szeliga M, Ruban B, Hesseling-Meinders A, et al. AcmD, a homolog of the major autolysin AcmA of Lactococcus lactis, binds to the cell wall and contributes to cell separation and autolysis. PLoS One. 2013; 8 (8): e72167. [
DOI:10.1371/journal.pone.0072167] [
PMID] [
PMCID]
65. Medina MS, Vintiñi EO, Villena J, Raya RR, Alvarez SG. Lactococcus lactis as an adjuvant and delivery vehicle of antigens against pneumococcal respiratory infections. Bioeng Bugs. 2010; 1 (5): 313-25. [
DOI:10.4161/bbug.1.5.12086] [
PMID] [
PMCID]
66. Drouault S, Corthier G, Ehrlich SD, Renault P. Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl Environ Microbiol. 1999; 65 (11): 4881-6. [
DOI:10.1128/AEM.65.11.4881-4886.1999] [
PMID] [
PMCID]
67. Kimoto H, Nomura M, Kobayashi M, Mizumachi K, Okamoto T. Survival of lactococci during passage through mouse digestive tract. Can J Microbiol. 2003; 49 (11): 707-11. [
DOI:10.1139/w03-092] [
PMID]
68. Dusso D, Salomon CJ. Solving the delivery of Lactococcus lactis: improved survival and storage stability through the bioencapsulation with different carriers. J Food Sci. 2023; 88 (4): 1495-505. [
DOI:10.1111/1750-3841.16538] [
PMID]
69. Lang J, Wang X, Liu K, He D, Niu P, Cao R, et al. Oral delivery of staphylococcal nuclease by Lactococcus lactis prevents type 1 diabetes mellitus in NOD mice. Appl Microbiol Biotechnol. 2017; 101 (20): 7653-62. [
DOI:10.1007/s00253-017-8480-5] [
PMID]
70. Lolou V, Panayiotidis MI. Functional role of probiotics and prebiotics on skin health and disease. Fermentation. 2019; 5 (2): 41. [
DOI:10.3390/fermentation5020041]
71. Bahey-El-Din M. Lactococcus lactis-based vaccines from laboratory bench to human use: an overview. Vaccine. 2012; 30 (4): 685-90. [
DOI:10.1016/j.vaccine.2011.11.098] [
PMID]
72. Norton PM, Brown HW, Le Page RW. The immune response to Lactococcus lactis: implications for its use as a vaccine delivery vehicle. FEMS Microbiol Lett. 1994; 120 (3): 249-56. [
DOI:10.1111/j.1574-6968.1994.tb07041.x] [
PMID]
73. Szatraj K, Szczepankowska AK, Chmielewska-Jeznach M. Lactic acid bacteria-promising vaccine vectors: possibilities, limitations, doubts. J Appl Microbiol. 2017; 123 (2): 325-39. [
DOI:10.1111/jam.13446] [
PMID] [
PMCID]
74. Hugentobler F, Di Roberto RB, Gillard J, Cousineau B. Oral immunization using live Lactococcus lactis co-expressing LACK and IL-12 protects BALB/c mice against Leishmania major infection. Vaccine. 2012; 30 (39): 5726-32. [
DOI:10.1016/j.vaccine.2012.07.004] [
PMID]
75. Hugentobler F, Yam KK, Gillard J, Mahbuba R, Olivier M, Cousineau B. Immunization against Leishmania major infection using LACK-and IL-12-expressing Lactococcus lactis induces delay in footpad swelling. PLoS One. 2012; 7 (2): e30945. [
DOI:10.1371/journal.pone.0030945] [
PMID] [
PMCID]
76. Theisen M, Soe S, Brunstedt K, Follmann F, Bredmose L, Israelsen H, et al. A Plasmodium falciparum GLURP-MSP3 chimeric protein; expression in Lactococcus lactis, immunogenicity and induction of biologically active antibodies. Vaccine. 2004; 22 (9-10): 1188-98. [
DOI:10.1016/j.vaccine.2003.09.017] [
PMID]
77. Acquah FK, Obboh EK, Asare K, Boampong JN, Nuvor SV, Singh SK, et al. Antibody responses to two new Lactococcus lactis-produced recombinant Pfs48/45 and Pfs230 proteins increase with age in malaria patients living in the Central Region of Ghana. Malar J. 2017; 16 (1): 306. [
DOI:10.1186/s12936-017-1955-0] [
PMID] [
PMCID]
78. Singh SK, Plieskatt J, Chourasia BK, Singh V, Bolscher JM, Dechering KJ, et al. The Plasmodium falciparum circumsporozoite protein produced in Lactococcus lactis is pure and stable. J Biol Chem. 2020; 295 (2): 403-14. [
DOI:10.1074/jbc.RA119.011268] [
PMID] [
PMCID]
79. Zhang Z-H, Jiang P-H, Li N-J, Shi M, Huang W. Oral vaccination of mice against rodent malaria with recombinant Lactococcus lactis expressing MSP-119. World J Gastroenterol. 2005; 11 (44): 6975-80. [
DOI:10.3748/wjg.v11.i44.6975] [
PMID] [
PMCID]
80. Ramasamy R, Yasawardena S, Zomer A, Venema G, Kok J, Leenhouts K. Immunogenicity of a malaria parasite antigen displayed by Lactococcus lactis in oral immunisations. Vaccine. 2006; 24 (18): 3900-8. [
DOI:10.1016/j.vaccine.2006.02.040] [
PMID] [
PMCID]
81. Moorthy G, Ramasamy R. Mucosal immunisation of mice with malaria protein on lactic acid bacterial cell walls. Vaccine. 2007; 25 (18): 3636-45. [
DOI:10.1016/j.vaccine.2007.01.070] [
PMID]
82. Moorthy S, Yasawardena S, Ramasamy R. Age-dependent systemic antibody responses and immunisation-associated changes in mice orally and nasally immunised with Lactococcus lactis expressing a malaria parasite protein. Vaccine. 2009; 27 (36): 4947-52. [
DOI:10.1016/j.vaccine.2009.06.011] [
PMID]
83. Quintana I, Espariz M, Villar SR, González FB, Pacini MF, Cabrera G, et al. Genetic engineering of Lactococcus lactis co-producing antigen and the mucosal adjuvant 3' 5'-cyclic di adenosine monophosphate (c-di-AMP) as a design strategy to develop a mucosal vaccine prototype. Front Microbiol. 2018;9:2100. [
DOI:10.3389/fmicb.2018.02100] [
PMID] [
PMCID]
84. Yang Q, Xu L, Lu H. Immune response after oral immunization with recombinant Lactococcus lactis expressing ROP1 of Toxoplasma gondii in mice. Chin J Schistosomiasis Control. 2009; 21 (2): 130-2.
85. Lee P, Faubert GM. Expression of the Giardia lamblia cyst wall protein 2 in Lactococcus lactis. Microbiology. 2006; 152 (7): 1981-90. [
DOI:10.1099/mic.0.28877-0] [
PMID]
86. Lee P, Abdul-Wahid A, Faubert GM. Comparison of the local immune response against Giardia lamblia cyst wall protein 2 induced by recombinant Lactococcus lactis and Streptococcus gordonii. Microbes Infect. 2009; 11 (1): 20-8. [
DOI:10.1016/j.micinf.2008.10.002] [
PMID]
87. Ma D, Gao M, Dalloul RA, Ge J, Ma C, Li J. Protective effects of oral immunization with live Lactococcus lactis expressing Eimeria tenella 3-1E protein. Parasitol Res. 2013; 112 (12): 4161-7. [
DOI:10.1007/s00436-013-3607-9] [
PMID]
88. Li J, Wang F, Ma C, Huang Y, Wang D, Ma D. Recombinant Lactococcus lactis expressing Eimeria tenella AMA1 protein and its immunological effects against homologous challenge. Exp Parasitol. 2018; 191: 1-8. [
DOI:10.1016/j.exppara.2018.05.003] [
PMID]
89. Li G, Ma C, Wang D, Chen W, Ma D. Recombinant Lactococcus lactis co-expressing dendritic cell target peptide and E. tenella 3-1E protein: immune response and efficacy against homologous challenge. Food Agric Immunol. 2020; 31 (1): 379-92. [
DOI:10.1080/09540105.2020.1733495]
90. Ma C, Li G, Chen W, Jia Z, Yang X, Pan X et al. Eimeria tenella: IMP1 protein delivered by Lactococcus lactis induces immune responses against homologous challenge in chickens. Vet Parasitol. 2021; 289: 109320. [
DOI:10.1016/j.vetpar.2020.109320] [
PMID]
91. Rafati S, Salmanian A-H, Taheri T, Vafa M, Fasel N. A protective cocktail vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine proteinases of Leishmania major. Vaccine. 2001; 19 (25-26): 3369-75. [
DOI:10.1016/S0264-410X(01)00081-0] [
PMID]
92. Zadeh-Vakili A, Taheri T, Doustdari F, Salmanian A-H, Rafati S. Bivalent DNA vaccination with genes encoding Leishmania major cysteine proteinases type I and II protects mice against infectious challenge. Iran J Biotechnol. 2004; 2 (1): 35-43.
93. Bermudez-Humaran LG, Corthier G, Langella P. Recent advances in the use of Lactococcus lactis as live recombinant vector for the development of new safe mucosal vaccines. Recent Res Dev Microbiol. 2004; 8: 147-60.
94. Guimarães VD, Innocentin S, Lefèvre F, Azevedo V, Wal J-M, Langella P, et al. Use of native lactococci as vehicles for delivery of DNA into mammalian epithelial cells. Appl Environ Microbiol. 2006; 72 (11): 7091-7. [
DOI:10.1128/AEM.01325-06] [
PMID] [
PMCID]
95. Guimarães V, Innocentin S, Chatel J-M, Lefèvre F, Langella P, Azevedo V, et al. A new plasmid vector for DNA delivery using lactococci. Genet Vaccines Ther. 2009; 7: 4. [
DOI:10.1186/1479-0556-7-4] [
PMID] [
PMCID]
96. Gao S, Li D, Liu Y, Zha E, Zhou T, Yue X. Oral immunization with recombinant hepatitis E virus antigen displayed on the Lactococcus lactis surface enhances ORF2-specific mucosal and systemic immune responses in mice. Int Immunopharmacol. 2015; 24 (1): 140-5-7. [
DOI:10.1016/j.intimp.2014.10.032] [
PMID]
97. Bermúdez-Humarán LG, Kharrat P, Chatel J-M, Langella P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb Cell Fact. 2011; 10 (Suppl 1): S4. [
DOI:10.1186/1475-2859-10-S1-S4] [
PMID] [
PMCID]
98. Gram GJ, Fomsgaard A, Thorn M, Madsen SM, Glenting J. Immunological analysis of a Lactococcus lactis-based DNA vaccine expressing HIV gp120. Genet Vaccines Ther. 2007; 5: 3. [
DOI:10.1186/1479-0556-5-3] [
PMID] [
PMCID]
99. de Azevedo M, Meijerink M, Taverne N, Pereira VB, LeBlanc JG, Azevedo V, et al. Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer. Vaccine. 2015; 33 (38): 4807-12. [
DOI:10.1016/j.vaccine.2015.07.077] [
PMID]
100. Pereira V, Da Cunha V, Preisser T, Souza B, Turk M, De Castro C, et al. Lactococcus lactis carrying a DNA vaccine coding for the ESAT-6 antigen increases IL-17 cytokine secretion and boosts the BCG vaccine immune response. J Appl Microbiol. 2017; 122 (6): 1657-62. [
DOI:10.1111/jam.13449] [
PMID]
101. Mancha-Agresti P, de Castro CP, Dos Santos JS, Araujo MA, Pereira VB, LeBlanc JG, et al. Recombinant invasive Lactococcus lactis carrying a DNA vaccine coding the Ag85A antigen increases INF-γ, IL-6, and TNF-α cytokines after intranasal immunization. Front Microbiol. 2017; 8: 1263. [
DOI:10.3389/fmicb.2017.01263] [
PMID] [
PMCID]
102. de Castro CP, Souza BM, Mancha-Agresti P, Pereira VB, Zurita-Turk M, Preisser TM, et al. Lactococcus lactis FNBPA+ (pValac: e6ag85a) induces cellular and humoral immune responses after oral immunization of mice. Front Microbiol. 2021; 12: 676172. [
DOI:10.3389/fmicb.2021.676172] [
PMID] [
PMCID]
103. Van der Weken H, Cox E, Devriendt B. Advances in Oral Subunit Vaccine Design. Vaccines. 2021; 9 (1): 1. [
DOI:10.3390/vaccines9010001] [
PMID] [
PMCID]
104. Szczepankowska AK, Szatraj K, Sałański P, Rózga A, Górecki RK, Bardowski JK. Recombinant Lactococcus lactis expressing haemagglutinin from a Polish avian H5N1 isolate and its immunological effect in preliminary animal trials. Biomed Res Int. 2017; 2017: 8696496. [
DOI:10.1155/2017/6747482] [
PMID] [
PMCID]
105. Zahirović A, Plavec TV, Berlec A. Dual functionalized Lactococcus lactis shows tumor antigen targeting and cytokine binding in vitro. Front Bioeng Biotechnol. 2022; 10: 822823. [
DOI:10.3389/fbioe.2022.822823] [
PMID] [
PMCID]
106. Sałański P, Kowalczyk M, Bardowski JK, Szczepankowska AK. Health-promoting nature of Lactococcus lactis IBB109 and Lactococcus lactis IBB417 strains exhibiting proliferation inhibition and stimulation of interleukin-18 expression in colorectal cancer cells. Front Microbiol. 2022; 13: 822912. [
DOI:10.3389/fmicb.2022.822912] [
PMID] [
PMCID]
107. Kasarello K, Kwiatkowska-Patzer B, Lipkowski AW, Bardowski JK, Szczepankowska AK. Oral administration of Lactococcus lactis expressing synthetic genes of myelin antigens in decreasing experimental autoimmune encephalomyelitis in rats. Med Sci Monit. 2015; 21: 1587-97. [
DOI:10.12659/MSM.892764] [
PMID] [
PMCID]
108. van der Vossen J, Kodde J, Haandrikman AJ, Venema G, Kok J. Characterization of transcription initiation and termination signals of the proteinase genes of Lactococcus lactis Wg2 and enhancement of proteolysis in L. lactis. Appl Environ Microbiol. 1992; 58 (9): 3142-9. [
DOI:10.1128/aem.58.9.3142-3149.1992] [
PMID] [
PMCID]
109. Asensi GF, de Sales NFF, Dutra FF, Feijó DF, Bozza MT, Ulrich RG, et al. Oral immunization with Lactococcus lactis secreting attenuated recombinant staphylococcal enterotoxin B induces a protective immune response in a murine model. Microb Cell Fact. 2013; 12: 32. [
DOI:10.1186/1475-2859-12-32] [
PMID] [
PMCID]
110. Dieye Y, Hoekman AJ, Clier F, Juillard V, Boot HJ, Piard J-C. Ability of Lactococcus lactis to export viral capsid antigens: a crucial step for development of live vaccines. Appl Environ Microbiol. 2003; 69 (12): 7281-8. [
DOI:10.1128/AEM.69.12.7281-7288.2003] [
PMID] [
PMCID]
111. Kusuma AV, Mustopa AZ, Mustafawi WZ, Suharsono S. The production of SPusp45-MSP-119 gene construct and its recombinant protein in Lactococcus lactis to be used as a malaria vaccine. Med J Indones. 2017; 26 (4): 261-9. [
DOI:10.13181/mji.v26i4.2162]
112. Wong KY, Khair MHMM, Song AAL, Masarudin MJ, Loh JY, Chong CM, et al. Recombinant lactococcal-based oral vaccine for protection against Streptococcus agalactiae infections in tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2024; 149: 109572. [
DOI:10.1016/j.fsi.2024.109572] [
PMID]
113. Zhang X, Hu S, Du X, Li T, Han L, Kong J. Heterologous expression of carcinoembryonic antigen in Lactococcus lactis via LcsB-mediated surface displaying system for oral vaccine development. J Microbiol Immunol Infect. 2016; 49 (6): 851-8. [
DOI:10.1016/j.jmii.2014.11.009] [
PMID]
114. Habimana O, Le Goff C, Juillard V, Bellon-Fontaine M-N, Buist G, Kulakauskas S, et al. Positive role of cell wall anchored proteinase PrtP in adhesion of lactococci. BMC Microbiol. 2007; 7: 36. [
DOI:10.1186/1471-2180-7-36] [
PMID] [
PMCID]
115. Galloway-Peña JR, Liang X, Singh KV, Yadav P, Chang C, La Rosa SL, et al. The identification and functional characterization of WxL proteins from Enterococcus faecium reveal surface proteins involved in extracellular matrix interactions. J Bacteriol. 2015; 197 (5): 882-92. [
DOI:10.1128/JB.02288-14] [
PMID] [
PMCID]
116. Leenhouts K, Buist G, Kok J. Anchoring of proteins to lactic acid bacteria. Antonie Van Leeuwenhoek. 1999; 76: 367-76. [
DOI:10.1023/A:1002095802571] [
PMID]
117. Ebrahimzadeh F, Shirdast H, Taromchi A, Talebkhan Y, Haniloo A, Esmaeilzadeh A, et al. Induction of immunogenic response in BALB/c mice by live and killed form of recombinant Lactococcus lactis displaying EG95 of Echinococcus granulosus. Iran Biomed J. 2021; 25 (4): 284-96. [
DOI:10.52547/ibj.25.4.284] [
PMID] [
PMCID]
118. Lindholm A, Ellmén U, Tolonen-Martikainen M, Palva A. Heterologous protein secretion in Lactococcus lactis is enhanced by the Bacillus subtilis chaperone-like protein PrsA. Appl Microbiol Biotechnol. 2006; 73 (4): 904-14. [
DOI:10.1007/s00253-006-0551-y] [
PMID]
119. Visweswaran GRR, Leenhouts K, van Roosmalen M, Kok J, Buist G. Exploiting the peptidoglycan-binding motif, LysM, for medical and industrial applications. Appl Microbiol Biotechnol. 2014; 98 (10): 4331-45. [
DOI:10.1007/s00253-014-5633-7] [
PMID] [
PMCID]
120. Raya-Tonetti F, Müller M, Sacur J, Kitazawa H, Villena J, Vizoso-Pinto MG. Novel LysM motifs for antigen display on lactobacilli for mucosal immunization. Sci Rep. 2021; 11 (1): 21691. [
DOI:10.1038/s41598-021-01087-8] [
PMID] [
PMCID]
121. Jee P-F, Tiong V, Shu M-H, Khoo J-J, Wong WF, Abdul Rahim R, et al. Oral immunization of a non-recombinant Lactococcus lactis surface displaying influenza hemagglutinin 1 (HA1) induces mucosal immunity in mice. PLoS One. 2017; 12 (11): e0187718. [
DOI:10.1371/journal.pone.0187718] [
PMID] [
PMCID]