Volume 13, Issue 1 (3-2025)                   JoMMID 2025, 13(1): 39-49 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amiriani T, Khasheii B, Zamanii S, Ghelichi-Ghojogh M, Jamalli A. Cyclomodulins, Colibactin, and Biofilm-Associated Genes in E. coli from Colorectal Cancer and Precancerous Lesions. JoMMID 2025; 13 (1) :39-49
URL: http://jommid.pasteur.ac.ir/article-1-691-en.html
Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
Abstract:   (38 Views)
Introduction: Colorectal cancer (CRC) remains a significant global health challenge. Specific strains of Escherichia coli elaborating virulence factors, including cyclomodulins and colibactin, have been increasingly implicated in CRC pathogenesis. This study aimed to determine the prevalence of genes encoding these toxins, namely cnf1, cdtB-I, and clbB, alongside genes associated with biofilm formation, csgA and flu, in clinical E. coli isolates from patients diagnosed with CRC or precancerous lesions. Methods: A total of 44 E. coli isolates were obtained from colorectal tissue biopsies of patients diagnosed with CRC or precancerous polyps, and from healthy controls. PCR was employed to screen for the presence of the toxin-encoding genes cnf1, cdtB-I, and clbB, as well as the biofilm-associated genes csgA and flu. Biofilm formation was assessed quantitatively utilizing a standard microtiter plate assay. Results: The toxin-encoding genes cnf1 and cdtB-I were each detected in 14 isolates (31.8%) across all study groups (CRC, polyp, and healthy controls). In contrast, the clbB gene was identified in 5 isolates (11.4%), exclusively within the polyp and healthy control groups. The biofilm-associated genes csgA and flu exhibited the highest prevalence, being detected in 41 (93.2%) and 22 (50.0%) isolates, respectively, across all groups. Notably, none of the tested isolates demonstrated biofilm formation capability under the experimental conditions employed. Conclusions: This study demonstrated the presence of the cdtB-I gene in E. coli isolates from both early-stage CRC (stages I and II), with a notably higher prevalence in stage I. Furthermore, cdtB-I was also detected in precancerous polyps classified as both high-grade dysplasia (HGD) and low-grade dysplasia (LGD). Intriguingly, the clbB gene was conspicuously absent from all CRC isolates of stages I and II. These findings suggest a potential role for cdtB-I in the early stages of CRC development, warranting further research to elucidate its precise impact on the progression of CRC. The presence of these virulence-associated genes, without significant differences across groups, underscores the complexity of E. coli's involvement in colorectal carcinogenesis.
Full-Text [PDF 938 kb]   (33 Downloads)    
Type of Study: Original article | Subject: Microbial pathogenesis
Received: 2024/10/21 | Accepted: 2025/03/11 | Published: 2025/06/1

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68 (6): 394-424. [DOI:10.3322/caac.21492] [PMID]
2. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020; 70 (3): 145-64. [DOI:10.3322/caac.21601] [PMID]
3. Buttó LF, Haller D. Dysbiosis in intestinal inflammation: cause or consequence. Int J Med Microbiol. 2016; 306 (5): 302-9. [DOI:10.1016/j.ijmm.2016.02.010] [PMID]
4. Drossman DA. Functional gastrointestinal disorders: history, pathophysiology, clinical features, and Rome IV. Gastroenterology. 2016; 150 (6): 1262-79. [DOI:10.1053/j.gastro.2016.02.032] [PMID]
5. Jeon J, Du M, Schoen RE, Hoffmeister M, Newcomb PA, Berndt SI, et al. Determining Risk of Colorectal Cancer and Starting Age of Screening Based on Lifestyle, Environmental, and Genetic Factors. Gastroenterology. 2018; 154 (8): 2152-64. [DOI:10.1053/j.gastro.2018.02.021] [PMID] [PMCID]
6. Witold K, Anna K, Maciej T, Jakub J. Adenomas-Genetic factors in colorectal cancer prevention. Rep Pract Oncol Radiother. 2018; 23 (2): 75-83. [DOI:10.1016/j.rpor.2017.12.003] [PMID] [PMCID]
7. Collins D, Hogan AM, Winter DC. Microbial and viral pathogens in colorectal cancer. Lancet Oncol. 2011; 12 (5): 504-12. [DOI:10.1016/S1470-2045(10)70186-8] [PMID]
8. Bengmark S. Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut. 1998; 42 (1): 2-7. [DOI:10.1136/gut.42.1.2] [PMID] [PMCID]
9. Johnson JR, Johnston B, Kuskowski MA, Nougayrede JP, Oswald E. Molecular epidemiology and phylogenetic distribution of the Escherichia coli pks genomic island. J Clin Microbiol. 2008; 46 (12): 3906-11. [DOI:10.1128/JCM.00949-08] [PMID] [PMCID]
10. Wassenaar TM. E. coli and colorectal cancer: a complex relationship that deserves a critical mindset. Crit Rev Microbiol. 2018; 44 (5): 619-32. [DOI:10.1080/1040841X.2018.1481013] [PMID]
11. Clements A, Young JC, Constantinou N, Frankel G. Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes. 2012; 3 (2): 71-87. [DOI:10.4161/gmic.19182] [PMID] [PMCID]
12. Nougayrède JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 2006; 313 (5788): 848-51. [DOI:10.1126/science.1127059] [PMID]
13. Fais T, Delmas J, Serres A, Bonnet R, Dalmasso G. Impact of CDT Toxin on Human Diseases. Toxins (Basel). 2016; 8 (7): 220. [DOI:10.3390/toxins8070220] [PMID] [PMCID]
14. Lai Y-R, Chang Y-F, Ma J, Chiu C-H, Kuo M-L, Lai C-H. From DNA damage to cancer progression: potential effects of cytolethal distending toxin. Front Immunol. 2021; 12: 760451. [DOI:10.3389/fimmu.2021.760451] [PMID] [PMCID]
15. Tóth I, Nougayrède JP, Dobrindt U, Ledger TN, Boury M, Morabito S, et al. Cytolethal distending toxin type I and type IV genes are framed with the lambdoid prophage genes in extraintestinal pathogenic Escherichia coli. Infect Immun. 2009; 77 (1): 492-500. [DOI:10.1128/IAI.00962-08] [PMID] [PMCID]
16. Jinadasa RN, Bloom SE, Weiss RS, Duhamel GE. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. Microbiology (Reading). 2011; 157 (Pt 7): 1851-75. [DOI:10.1099/mic.0.049536-0] [PMID] [PMCID]
17. Cortes-Bratti X, Frisan T, Thelestam M. The cytolethal distending toxins induce DNA damage and cell cycle arrest. Toxicon. 2001; 39 (11): 1729-36. [DOI:10.1016/S0041-0101(01)00159-3] [PMID]
18. Balskus EP. Colibactin: understanding an elusive gut bacterial genotoxin. Nat Prod Rep. 2015; 32 (11): 1534-40. [DOI:10.1039/C5NP00091B] [PMID]
19. McCarthy AJ, Martin P, Cloup E, Stabler RA, Oswald E, Taylor PW. The genotoxin colibactin is a determinant of virulence in Escherichia coli K1 experimental neonatal systemic infection. Infect Immun. 2015; 83 (9): 3704-11. [DOI:10.1128/IAI.00716-15] [PMID] [PMCID]
20. Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède JP. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A. 2010; 107 (25): 11537-42. [DOI:10.1073/pnas.1001261107] [PMID] [PMCID]
21. Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 2014; 63 (12): 1932-42. [DOI:10.1136/gutjnl-2013-305257] [PMID]
22. Johnson JR, Kuskowski MA, Gajewski A, Soto S, Horcajada JP, Anta MTJD, et al. Extended virulence genotypes and phylogenetic background of Escherichia coli isolates from patients with cystitis, pyelonephritis, or prostatitis. J Infect Dis. 2005; 191 (1): 46-50. [DOI:10.1086/426450] [PMID]
23. Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A, Bonnet R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes. 2014; 5 (5): 675-80. [DOI:10.4161/19490976.2014.969989] [PMID] [PMCID]
24. Raisch J, Buc E, Bonnet M, Sauvanet P, Vazeille E, De Vallée A, et al. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J Gastroenterol. 2014; 20 (21): 6560-72. [DOI:10.3748/wjg.v20.i21.6560] [PMID] [PMCID]
25. Kurnick SA, Mannion AJ, Feng Y, Madden CM, Chamberlain P, Fox JG. Genotoxic Escherichia coli Strains Encoding Colibactin, Cytolethal Distending Toxin, and Cytotoxic Necrotizing Factor in Laboratory Rats. Comp Med. 2019; 69 (2): 103-13. [DOI:10.30802/AALAS-CM-18-000099] [PMID] [PMCID]
26. Chew SS, Tan LT, Law JW, Pusparajah P, Goh BH, Ab Mutalib NS, et al. Targeting Gut Microbial Biofilms-A Key to Hinder Colon Carcinogenesis?. Cancers (Basel). 2020; 12 (8): 2272. [DOI:10.3390/cancers12082272] [PMID] [PMCID]
27. Tomkovich S, Dejea CM, Winglee K, Drewes JL, Chung L, Housseau F, et al. Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. J Clin Invest. 2019; 129 (4): 1699-712. [DOI:10.1172/JCI124196] [PMID] [PMCID]
28. Torres AG, Zhou X, Kaper JB. Adherence of diarrheagenic Escherichia coli strains to epithelial cells. Infect Immun. 2005; 73 (1): 18-29. [DOI:10.1128/IAI.73.1.18-29.2005] [PMID] [PMCID]
29. Uhlich GA, Cooke PH, Solomon EB. Analyses of the red-dry-rough phenotype of an Escherichia coli O157:H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl Environ Microbiol. 2006; 72 (4): 2564-72. [DOI:10.1128/AEM.72.4.2564-2572.2006] [PMID] [PMCID]
30. Kjaergaard K, Schembri MA, Ramos C, Molin S, Klemm P. Antigen 43 facilitates formation of multispecies biofilms. Environ Microbiol. 2000; 2 (6): 695-702. [DOI:10.1046/j.1462-2920.2000.00152.x] [PMID]
31. Hammar M, Arnqvist A, Bian Z, Olsén A, Normark S. Expression of two csg operons is required for production of fibronectin‐and congo red‐binding curli polymers in Escherichia coli K‐12. Mol Microbiol. 1995; 18 (4): 661-70. [DOI:10.1111/j.1365-2958.1995.mmi_18040661.x] [PMID]
32. Tille P. Bailey & Scott's Diagnostic Microbiology. 13th ed. St. Louis: Elsevier Health Sciences; 2015.
33. Merritt JH, Kadouri DE, O'Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol. 2005; Chapter 1: Unit 1B.1. [DOI:10.1002/9780471729259.mc01b01s00] [PMID] [PMCID]
34. Naves P, Del Prado G, Huelves L, Gracia M, Ruiz V, Blanco J, et al. Measurement of biofilm formation by clinical isolates of Escherichia coli is method‐dependent. J Appl Microbiol. 2008; 105 (2): 585-90. [DOI:10.1111/j.1365-2672.2008.03791.x] [PMID]
35. Chauhan A, Chan K, Halfdanarson TR, Bellizzi AM, Rindi G, O'Toole D, et al. Critical updates in neuroendocrine tumors: Version 9 American Joint Committee on Cancer staging system for gastroenteropancreatic neuroendocrine tumors. CA Cancer J Clin. 2024; 74 (4): 359-67. [DOI:10.3322/caac.21840] [PMID]
36. Dutta A, Pratiti R, Kalantary A, Aboulian A, Shekherdimian S. Colorectal Cancer: A Systematic Review of the Current Situation and Screening in North and Central Asian Countries. Cureus. 2023; 15 (1): e33424. [DOI:10.7759/cureus.33424]
37. Swidsinski A, Khilkin M, Kerjaschki D, Schreiber S, Ortner M, Weber J, et al. Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology. 1998; 115 (2): 281-6. [DOI:10.1016/S0016-5085(98)70194-5] [PMID]
38. Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012; 338 (6103): 120-3. [DOI:10.1126/science.1224820] [PMID] [PMCID]
39. Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J, Darfeuille-Michaud A, et al. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One. 2013; 8 (2): e56964. [DOI:10.1371/journal.pone.0056964] [PMID] [PMCID]
40. Zhang Z, Aung KM, Uhlin BE, Wai SN. Reversible senescence of human colon cancer cells after blockage of mitosis/cytokinesis caused by the CNF1 cyclomodulin from Escherichia coli. Sci Rep. 2018; 8 (1): 17780. [DOI:10.1038/s41598-018-36036-5] [PMID] [PMCID]
41. Giamboi-Miraglia A, Travaglione S, Filippini P, Fabbri A, Fiorentini C, Falzano L. A multinucleating Escherichia coli cytotoxin perturbs cell cycle in cultured epithelial cells. Toxicol In Vitro. 2007; 21 (2): 235-9. [DOI:10.1016/j.tiv.2006.08.013] [PMID]
42. Lara-Tejero M, Galán JE. CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect Immun. 2001; 69 (7): 4358-65. [DOI:10.1128/IAI.69.7.4358-4365.2001] [PMID] [PMCID]
43. Scuron MD, Boesze-Battaglia K, Dlakić M, Shenker BJ. The cytolethal distending toxin contributes to microbial virulence and disease pathogenesis by acting as a tri-perditious toxin. Front Cell Infect Microbiol. 2016; 6: 168. [DOI:10.3389/fcimb.2016.00168] [PMID] [PMCID]
44. Dziubańska-Kusibab PJ, Berger H, Battistini F, Bouwman BA, Iftekhar A, Katainen R, et al. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med. 2020; 26 (7): 1063-9. [DOI:10.1038/s41591-020-0908-2] [PMID]
45. Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R, et al. Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology. 2004; 127 (1): 80-93. [DOI:10.1053/j.gastro.2004.03.054] [PMID]
46. Nouri R, Hasani A, Shirazi KM, Alivand MR, Sepehri B, Sotoudeh S, et al. Mucosa-Associated Escherichia coli in Colorectal Cancer Patients and Control Subjects: Variations in the Prevalence and Attributing Features. Can J Infect Dis Med Microbiol. 2021; 2021: 2131787. [DOI:10.1155/2021/2131787] [PMID] [PMCID]
47. Hassan RAS, Askar BA. Prevalence and association of pks+ Escherichia coli with colorectal cancer in Iraqi patients. Sci Arch. 2023; 4 (3): 232-9. [DOI:10.47587/SA.2023.4309]
48. Kotlowski R, Bernstein CN, Sepehri S, Krause DO. High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut. 2007; 56 (5): 669-75. [DOI:10.1136/gut.2006.099796] [PMID] [PMCID]
49. Toth I, Herault F, Beutin L, Oswald E. Production of cytolethal distending toxins by pathogenic Escherichia coli strains isolated from human and animal sources: establishment of the existence of a new cdt variant (Type IV). J Clin Microbiol. 2003; 41 (9): 4285-91. [DOI:10.1128/JCM.41.9.4285-4291.2003] [PMID] [PMCID]
50. Gomez-Moreno R, Robledo IE, Baerga-Ortiz A. Direct Detection and Quantification of Bacterial Genes Associated with Inflammation in DNA Isolated from Stool. Adv Microbiol. 2014; 4 (15): 1065-75. [DOI:10.4236/aim.2014.415117] [PMID] [PMCID]
51. Chat H, Dalmasso G, Godfraind C, Bonnin V, Beyrouthy R, Bonnet M, et al. Cytotoxic necrotizing factor 1 hinders colon tumorigenesis induced by colibactin-producing Escherichia coli in ApcMin/+ mice. Gut Microbes. 2023; 15 (1): 2229569. [DOI:10.1080/19490976.2023.2229569] [PMID] [PMCID]
52. Iyadorai T, Mariappan V, Vellasamy KM, Wanyiri JW, Roslani AC, Lee GK, et al. Prevalence and association of pks+ Escherichia coli with colorectal cancer in patients at the University Malaya Medical Centre, Malaysia. PloS One. 2020; 15 (1): e0228217. [DOI:10.1371/journal.pone.0228217] [PMID] [PMCID]
53. Kosari F, Taheri M, Moradi A, Alni RH, Alikhani MY. Evaluation of cinnamon extract effects on clbB gene expression and biofilm formation in Escherichia coli strains isolated from colon cancer patients. BMC Cancer. 2020; 20 (1): 267. [DOI:10.1186/s12885-020-06736-1] [PMID] [PMCID]
54. Suresh A, Ranjan A, Jadhav S, Hussain A, Shaik S, Alam M, et al. Molecular Genetic and Functional Analysis of pks-Harboring, Extra-Intestinal Pathogenic Escherichia coli From India. Front Microbiol. 2018; 9: 2631. [DOI:10.3389/fmicb.2018.02631] [PMID] [PMCID]
55. Shimpoh T, Hirata Y, Ihara S, Suzuki N, Kinoshita H, Hayakawa Y, et al. Prevalence of pks-positive Escherichia coli in Japanese patients with or without colorectal cancer. Gut Pathog. 2017; 9: 35. [DOI:10.1186/s13099-017-0185-x] [PMID] [PMCID]
56. Miyasaka T, Yamada T, Uehara K, Sonoda H, Matsuda A, Shinji S, et al. Pks‐positive Escherichia coli in tumor tissue and surrounding normal mucosal tissue of colorectal cancer patients. Cancer Sci. 2024; 115 (4): 1184-95. [DOI:10.1111/cas.16088] [PMID] [PMCID]
57. He X, Ren E, Dong L, Yuan P, Zhu J, Liu D, et al. Contribution of PKS+ Escherichia coli to colon carcinogenesis through the inhibition of exosomal miR-885-5p. Heliyon. 2024; 10 (18): e37346. [DOI:10.1016/j.heliyon.2024.e37346] [PMID] [PMCID]
58. Wei Z, Cao S, Liu S, Yao Z, Sun T, Li Y, et al. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients' survival? A pilot study on relevant mechanism. Oncotarget. 2016; 7 (29): 46158-72. [DOI:10.18632/oncotarget.10064] [PMID] [PMCID]
59. Wang J, Stanford K, McAllister TA, Johnson RP, Chen J, Hou H, et al. Biofilm Formation, Virulence Gene Profiles, and Antimicrobial Resistance of Nine Serogroups of Non-O157 Shiga Toxin-Producing Escherichia coli. Foodborne Pathog Dis. 2016; 13 (6): 316-24. [DOI:10.1089/fpd.2015.2099] [PMID]
60. Taghadosi R, Shakibaie MR, Ghanbarpour R, Hosseini-Nave H. Role of antigen-43 on biofilm formation and horizontal antibiotic resistance gene transfer in non-O157 Shiga toxin producing Escherichia coli strains. Iran J Microbiol. 2017; 9 (2): 89-96.
61. Biscola FT, Abe CM, Guth BE. Determination of adhesin gene sequences in, and biofilm formation by, O157 and non-O157 Shiga toxin-producing Escherichia coli strains isolated from different sources. Appl Environ Microbiol. 2011; 77 (7): 2201-8. [DOI:10.1128/AEM.01920-10] [PMID] [PMCID]
62. Markova J, Anganova E, Turskaya A, Bybin V, Savilov E. Regulation of Escherichia coli biofilm formation. Appl Biochem Microbiol. 2018; 54: 1-11. [DOI:10.1134/S0003683818010040]
63. Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, et al. Critical review on biofilm methods. Crit Rev Microbiol. 2017; 43 (3): 313-51. [DOI:10.1080/1040841X.2016.1208146] [PMID]
64. Roberts AE, Kragh KN, Bjarnsholt T, Diggle SP. The limitations of in vitro experimentation in understanding biofilms and chronic infection. J Mol Biol. 2015; 427 (23): 3646-61. [DOI:10.1016/j.jmb.2015.09.002] [PMID]
65. Ulett GC, Valle J, Beloin C, Sherlock O, Ghigo J-M, Schembri MA. Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect Immun. 2007; 75 (7): 3233-44. [DOI:10.1128/IAI.01952-06] [PMID] [PMCID]
66. Wey JK, Jürgens K, Weitere M. Seasonal and successional influences on bacterial community composition exceed that of protozoan grazing in river biofilms. Appl Environ Microbiol. 2012; 78 (6): 2013-24. [DOI:10.1128/AEM.06517-11] [PMID] [PMCID]
67. Ballén V, Cepas V, Ratia C, Gabasa Y, Soto SM. Clinical Escherichia coli: from biofilm formation to new antibiofilm strategies. Microorganisms. 2022; 10 (6): 1103. [DOI:10.3390/microorganisms10061103] [PMID] [PMCID]
68. Jefferson KK. What drives bacteria to produce a biofilm?. FEMS Microbiol Lett. 2004; 236 (2): 163-73. [DOI:10.1111/j.1574-6968.2004.tb09643.x] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.