Volume 13, Issue 2 (6-2025)                   JoMMID 2025, 13(2): 127-133 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Olambe T, Agrawal S, Shrikhande S. Trends in the Microbial Profile of Bronchoalveolar Lavage Samples from Patients with Lower Respiratory Tract Infections. JoMMID 2025; 13 (2) :127-133
URL: http://jommid.pasteur.ac.ir/article-1-608-en.html
Department of Microbiology, Dr. D. Y. Patil medical college, Hospital and Research Centre Pimpri, Pune, India
Abstract:   (113 Views)
Introduction: Lower respiratory tract infections (LRTIs) contribute substantially to global morbidity and mortality, with bacterial and fungal causative agents exhibiting regional and temporal variations. Evolving antimicrobial resistance patterns among bacterial pathogens pose challenges to empirical treatment strategies. This study aimed to identify the etiological agents of LRTIs and characterize their antimicrobial resistance profiles. Methods: Bronchoalveolar lavage (BAL) fluid was obtained from adult patients with suspected LRTIs undergoing bronchoscopy at a tertiary care center in India between August 2021 and December 2022, and processed using standard microbiological techniques for bacterial and fungal pathogen identification. Antimicrobial susceptibility testing (AST) was performed on isolated pathogens using the Kirby-Bauer disk diffusion method. Data were analyzed using descriptive statistics with Microsoft Excel. Results: Among 86 BAL samples, 33 (38.4%) yielded positive cultures, with 31 bacterial and 2 fungal isolates. Among the bacterial isolates, Klebsiella pneumoniae was the most frequent organism (36.4%), followed by Acinetobacter spp. (18.2%). The fungal isolates were identified as C. albicans. Among K. pneumoniae isolates, resistance to cephalosporins ranged from 66.7% to 100%, with the lowest resistance observed against piperacillin-tazobactam (25%). Among Gram-negative bacterial isolates, 60% of bacterial isolates were extended-spectrum β-lactamase (ESBL) producers, 36% were metallo-β-lactamase (MBL) producers, and 48% were carbapenemase producers. Both C. albicans isolates were susceptible to fluconazole and voriconazole, while one isolate exhibited resistance to itraconazole and the other to ketoconazole. Conclusions: This study found that Gram-negative bacteria were the predominant etiological agents of LRTIs, exhibiting high resistance to commonly used empirical antibiotics, such as cephalosporins and carbapenems. Notably, resistance to aminoglycosides was lower than to cephalosporins and carbapenems, which may warrant further investigation into local prescribing patterns. These findings highlight the variability of antimicrobial susceptibility and emphasize the critical need for accurate clinical and microbiological diagnosis, along with the development of evidence-based institutional antibiotic policies for the empirical management of LRTIs.
 
Full-Text [PDF 768 kb]   (27 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2023/10/15 | Accepted: 2025/06/11 | Published: 2025/06/11

References
1. Woodhead M, Blasi F, Ewig S, Huchon G, Leven M, Ortqvist A, et al. Guidelines for the management of adult lower respiratory tract infections. Eur Respir J. 2005; 26 (6): 1138-80. [DOI:10.1183/09031936.05.00055705] [PMID]
2. Wunderink RG, Waterer G. Advances in the causes and management of community acquired pneumonia in adults. BMJ. 2017; 358: j2471. [DOI:10.1136/bmj.j2471] [PMID]
3. Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204‑22.
4. Dawadi S, Rao BS, Khan GM. Pattern of antimicrobial prescription and its cost analysis in respiratory tract infection. Kathmandu Univ Med J (KUMJ). 2005; 1 (1): 1-5. [DOI:10.3126/kuset.v1i1.64284]
5. Mishra SK, Kattel HP, Acharya J, Shah NP, Shah AS, Sherchand JB, et al. Recent trend of bacterial aetiology of lower respiratory tract infection in a tertiary care centre of Nepal. Int J Infect Microbiol. 2012; 1 (1): 3-8. [DOI:10.3126/ijim.v1i1.6639]
6. Tille PM. Infections of the lower respiratory system. In: Mahon CR, Lehman DC, editors. Bailey & Scott's Diagnostic Microbiology. 13th ed. St Louis: Elsevier; 2014. p. 878-90.
7. Procop GW, Church DL, Hall GS, Janda WM, Koneman EW, Schreckenberger PC, et al. Koneman's Color Atlas and Textbook of Diagnostic Microbiology. 7th ed. Philadelphia: Wolters Kluwer; 2017. p. 69-76.
8. Sarmah N, Sarmah A, Das DK. A study on the microbiological profile of respiratory tract infection (RTI) in patients attending Gauhati Medical College & Hospital. Ann Int Med Den Res. 2016; 2 (5): 11-5. [DOI:10.21276/aimdr.2016.2.5.MB3]
9. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI Supplement M100. Wayne (PA): Clinical and Laboratory Standards Institute; 2020.
10. Panda S, Nandini BP, Ramani TV. Lower respiratory tract infection-bacteriological profile and antibiogram pattern. Int J Curr Res Rev. 2012; 4 (21): 149-55.
11. Vijay S, Dalela G. Prevalence of LRTI in patients presenting with productive cough and their antibiotic resistance pattern. J Clin Diagn Res. 2016; 10 (1): 9-12. [DOI:10.7860/JCDR/2016/17855.7082] [PMID] [PMCID]
12. Ravichitra KN, Rao US. Etiological agents isolated from bronchoalveolar lavage samples in patients with lower respiratory tract infections. Int J Curr Microbiol App Sci. 2019; 8 (8): 1-5. [DOI:10.20546/ijcmas.2019.808.001]
13. Padmaja N, Rao V. Bacteriological profile and antibiogram of bronchoalveolar lavage fluid from patients with respiratory tract infections at a tertiary care Hospital. Indian J Microbiol Res. 2021; 8 (2): 119-22. [DOI:10.18231/j.ijmr.2021.023]
14. Dickson RP, Erb-Downward JR, Prescott HC, Martinez FJ, Curtis JL, Lama VN, et al. Analysis of culture-dependent versus culture-independent techniques for identification of bacteria in clinically obtained bronchoalveolar lavage fluid. J Clin Microbiol. 2014; 52 (10): 3605-13. [DOI:10.1128/JCM.01028-14] [PMID] [PMCID]
15. Kneidinger N, Warszawska J, Schenk P, Fuhrmann V, Bojic A, Hirschl A, et al. Storage of bronchoalveolar lavage fluid and accuracy of microbiologic diagnostics in the ICU: a prospective observational study. Crit Care. 2013; 17 (4): R135. [DOI:10.1186/cc12814] [PMID] [PMCID]
16. Ramana KV, Kalaskar A, Rao M, Rao SD. Aetiology and antimicrobial susceptibility pattern of lower respiratory tract infections (LRTIs) in a Rural Tertiary care teaching Hospital at Karimnagar, South India. Am J Infect Dis Microbiol. 2013; 1 (5): 101-5. [DOI:10.12691/ajidm-1-5-5]
17. Palewar M, Swati M, Dohe V, Kagal A, Karyakarte R. Recent trends in bacteriological profile of lower respiratory tract infections (LRTIs) in outdoor, indoor and critical care settings of a tertiary care centre in Pune. Indian J Basic Appl Med Res. 2021; 10 (2): 261-9.
18. Gebre AB, Begashaw TA, Ormago MD. Bacterial profile and drug susceptibility among adult patients with community acquired lower respiratory tract infection at tertiary hospital, Southern Ethiopia. BMC Infect Dis. 2021; 21 (1): 440. [DOI:10.1186/s12879-021-06151-2] [PMID] [PMCID]
19. Madhavi S, Rao MR, Rao RJ. Bacterial etiology of acute exacerbations of chronic obstructive pulmonary disease. J Microbiol Biotechnol Res. 2012; 2 (3): 440-4.
20. Torres A, Niederman MS, Chastre J, Ewig S, Fernandez-Vandellos P, Hanberger H, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia. Eur Respir J. 2024; 63 (3): 2301536.
21. Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, Harbarth S. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018; 4 (1): 18033 [DOI:10.1038/nrdp.2018.33] [PMID]
22. Hoban DJ, Biedenbach DJ, Mutnick AH, Jones RN. Pathogen of occurrence and susceptibility patterns associated with pneumonia in hospitalized patients in North America: results of the SENTRY Antimicrobial Surveillance Study (2000). Diagn Microbiol Infect Dis. 2003; 45 (4): 279-85. [DOI:10.1016/S0732-8893(02)00540-0] [PMID]
23. Bajpai T, Shrivastava G, Bhatambare GS, Deshmukh AB, Chitnis V. Microbiological profile of lower respiratory tract infections in neurological intensive care unit of a tertiary care centre from Central India. J Basic Clin Pharm. 2013; 4 (3): 51-5. [DOI:10.4103/0976-0105.118789] [PMID] [PMCID]
24. Rajkumar S, Sistla S, Manoharan M, Sugumar M, Nagasundaram N, Parija SC, et al. Prevalence and genetic mechanisms of antimicrobial resistance in Staphylococcus aureus isolates from a tertiary care hospital in south India Bangladesh Pharm J. 2016; 19 (1): 85-91.
25. Santella B, Serretiello E, De Fillippis A, Veronica F, Iervolino D, Dell'Annunziata F, et al. Lower respiratory tract pathogens and their antimicrobial susceptibility pattern: A 5-year study. Antibiotics (Basel). 2021; 10 (7): 851. [DOI:10.3390/antibiotics10070851] [PMID] [PMCID]
26. Kumar AR. Antimicrobial sensitivity pattern of Klebsiella pneumoniae isolated from sputum from tertiary care hospital, Surendranagar, Gujarat and issues related to the rational selection of antimicrobials. Sch J Appl Med Sci. 2013; 1 (6): 928-33.
27. Khan S, Priti S, Ankit S. Bacteria etiological agents causing lower respiratory tract infections and their resistance patterns. Iran Biomed J. 2015; 19 (4): 240-6.
28. Zhang H, Liu Y, Zhang Q, Wang J, Chen X, Zhang Y, et al. Molecular mechanisms of carbapenem resistance in Klebsiella pneumoniae from bronchoalveolar lavage samples: a 2025 genomic study. J Antimicrob Chemother. 2025; 80 (2): 312-20.
29. Chung DR, Song JH, Kim SH, Thamlikitkul V, Huang SG, Wang H, et al. High prevalence of multidrug-resistant nonfermenters in hospital-acquired pneumonia in Asia. Am J Respir Crit Care Med. 2011; 184 (12): 1409-17. [DOI:10.1164/rccm.201102-0349OC] [PMID]
30. Shete VB, Ghadage DP, Muley VA, Bhore AV. Multi-drug resistant Acinetobacter ventilator-associated pneumonia. Lung India. 2010; 27 (4): 217-20. [DOI:10.4103/0970-2113.71952] [PMID] [PMCID]
31. Sohail M, Rashid A, Aslam B, Waseem M, Shahid M, Akram M, et al. Antimicrobial susceptibility of Acinetobacter clinical isolates and emerging antibiogram trends for nosocomial infection management. Rev Soc Bras Med Trop. 2016; 49 (3): 300-4. [DOI:10.1590/0037-8682-0111-2016] [PMID]
32. Patel TS, Carver PL, Eschenauer GA, Pogue JM, Nicolau DP. Epidemiology and treatment outcomes of multidrug-resistant Acinetobacter baumannii in lower respiratory tract infections: a 2024 multicenter study. Antimicrob Agents Chemother. 2024; 68 (8): e00524-24.
33. Tripathi P, Banerjee G, Saxena S, Gupta MK, Ramteke PW. Antibiotic resistance pattern of Pseudomonas aeruginosa isolated from patients of lower respiratory tract infection. Afr J Microbiol Res. 2011; 5 (19): 2955-9. [DOI:10.5897/AJMR11.460]
34. Gupta R, Malik A, Rizvi M, Ahmed M, Singh A. Epidemiology of multidrug-resistant Gram-negative pathogens isolated from ventilator-associated pneumonia in ICU patients. J Glob Antimicrob Resist. 2017; 9: 47-50. [DOI:10.1016/j.jgar.2016.12.016] [PMID]
35. Radhika B, Padmaja J. Detection of serine carbapenemase and metallo carbapenemase enzymes in Klebsiella pneumonia in a tertiary care hospital. Am J Sci Med Res. 2015; 2 (1): 136-47.
36. Bassetti M, Magnasco L, Vena A, Mastroianni C, Trucchi C, Icardi G, et al. Antimicrobial resistance patterns in lower respiratory tract infections: a 2024 update from the DRIVE-AB project. Clin Microbiol Infect. 2024; 30 (6): 729-36.
37. Gupta P, Sharma M, Das BK, Sood S, Khanna N. Antifungal susceptibility patterns of Candida species in lower respiratory tract infections: a 2024 Indian perspective. Mycoses. 2024; 67 (9): e13789.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.