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Introduction: Lower respiratory tract infections (LRTIs) contribute
substantially to global morbidity and mortality, with bacterial and fungal
causative agents exhibiting regional and temporal variations. Evolving
antimicrobial resistance patterns among bacterial pathogens pose challenges
to empirical treatment strategies. This study aimed to identify the etiological
agents of LRTIs and characterize their antimicrobial resistance profiles.
Methods: Bronchoalveolar lavage (BAL) fluid was obtained from adult
patients with suspected LRTIs undergoing bronchoscopy at a tertiary care
center in India between August 2021 and December 2022, and processed
using standard microbiological techniques for bacterial and fungal pathogen
identification. Antimicrobial susceptibility testing (AST) was performed on
isolated pathogens using the Kirby-Bauer disk diffusion method. Data were
analyzed using descriptive statistics with Microsoft Excel. Results: Among
86 BAL samples, 33 (38.4%) yielded positive cultures, with 31 bacterial and
2 fungal isolates. Among the bacterial isolates, Klebsiella pneumoniae was
the most frequent organism (36.4%), followed by Acinetobacter spp.
(18.2%). The fungal isolates were identified as C. albicans. Among K.
pneumoniae isolates, resistance to cephalosporins ranged from 66.7% to
100%, with the lowest resistance observed against piperacillin-tazobactam
(25%). Among Gram-negative bacterial isolates, 60% of bacterial isolates
were extended-spectrum B-lactamase (ESBL) producers, 36% were metallo-
B-lactamase (MBL) producers, and 48% were carbapenemase producers.
Both C. albicans isolates were susceptible to fluconazole and voriconazole,
while one isolate exhibited resistance to itraconazole and the other to
ketoconazole. Conclusions: This study found that Gram-negative bacteria
were the predominant etiological agents of LRTIs, exhibiting high resistance
to commonly used empirical antibiotics, such as cephalosporins and
carbapenems. Notably, resistance to aminoglycosides was lower than to
cephalosporins and carbapenems, which may warrant further investigation
into local prescribing patterns. These findings highlight the variability of
antimicrobial susceptibility and emphasize the critical need for accurate
clinical and microbiological diagnosis, along with the development of
evidence-based institutional antibiotic policies for the empirical
management of LRTIs.

INTRODUCTION

Lower respiratory tract infections (LRTIs) are a
common cause of morbidity and mortality worldwide,
characterized by symptoms such as cough, sputum
production, dyspnea, wheezing, and/or chest pain or
discomfort, typically persisting for 1-3 weeks in acute
cases [1]. LRTIs are the leading infectious cause of death

overall causes of mortality in high-income economies [2].
A 2019 Global Burden of Disease study on the global
burden of disease attributed approximately 2.49 million
deaths to LRTIs, positioning them as the sixth leading
cause of mortality worldwide and the leading cause of
death among children under 5 years of age [3]. LRTIs are

in low-income countries and rank among the top ten
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significant health concerns throughout the lifespan,
frequently affecting young children and older adults [4].

Commonly identified pathogens in LRTIs include
Staphylococcus aureus, Streptococcus pneumoniae,
Pseudomonas aeruginosa, Escherichia coli, and
Klebsiella pneumoniae, with their identification guiding
the selection of appropriate empirical antimicrobial
therapy [5]. Common LRTI pathogens, such as S.
pneumoniae and K. pneumoniae utilize virulence factors,
such as capsules for immune evasion, complicating
treatment amid rising resistance [6]. For instance,
encapsulated bacteria like S. pneumoniae and K.
pneumoniae evade immune clearance, enhance
adherence, and facilitate biofilm formation, promoting
their persistence and proliferation. S. aureus produces
toxins and enzymes that cause tissue damage, while P.
aeruginosa exhibits rapid growth, toxin production, and
flagella-mediated motility, facilitating dissemination.

These virulence factors, combined with rising
antimicrobial resistance due to inappropriate antibiotic
use, agricultural practices, and the spread of resistant
organisms, pose a significant threat to public health [7].
This threat is exacerbated by inappropriate antibiotic use
before culture results, necessitating updated pathogen and
resistance data [8].

Despite regional variations, data from Indian tertiary
centers are limited, necessitating this study to characterize
local etiological agents and resistance patterns. Therefore,
up-to-date knowledge of the causative pathogens and their
antimicrobial susceptibility profiles is essential for
guiding appropriate therapeutic decisions. This study
aimed to identify the etiological agents of LRTIs and
characterize their antimicrobial resistance patterns in
adult patients with LRTI symptoms undergoing
bronchoscopy with bronchoalveolar lavage at a tertiary
care center in India.

MATERIAL AND METHODS

Study design and setting. This prospective cross-
sectional study was conducted at the Department of
Microbiology, in a tertiary care center in central India,
from August 2021 to December 2022. BAL fluid
specimens were collected from adult patients in the
Department of Respiratory Medicine who showed no
clinical response to >5 days of empirical antimicrobial
therapy and required bronchoscopy for diagnostic
evaluation.

Ethical considerations. The study was approved by the
Institutional Ethics Committee at Government Medical
College, Nagpur, India, on January 2, 2021.

Inclusion and exclusion criteria. Adult patients (>18
years) with suspected LRTIs who showed no response to
>5 days of empirical therapy and underwent
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bronchoscopy were included, while pediatric patients
(<18 vyears), pregnant women, and those with active
pulmonary tuberculosis or immunosuppressive conditions
were excluded.

Sample collection. BAL fluid was collected from
eligible adult patients admitted to the chest medicine ward
after obtaining written informed consent. Patients were
informed about the bronchoscopy procedure, its risks,
benefits, and alternatives before providing consent.

Sample processing. A total of 86 BAL fluid specimens
were processed in the microbiology laboratory following
standard bronchoscopy collection by respiratory
physicians. Upon receipt, BAL fluid specimens were
examined for color, turbidity, mucopurulent appearance,
blood, or pigmentation. Direct smears were examined
using Gram stain for bacteria and yeast, Ziehl-Neelsen
stain for acid-fast bacilli, and 10% potassium hydroxide
(KOH) mount for fungal elements.

Culture and identification. BAL fluid specimens were
cultured on blood agar, MacConkey agar, chocolate agar,
and Sabouraud dextrose agar for bacterial and fungal
identification. Blood and MacConkey agar plates were
incubated aerobically at 37°C for 18-24 h, chocolate agar
plates at 37°C in 5% CO- for 24-48 h, and Sabouraud
dextrose agar at 25°C for up to 3 weeks. Bacterial isolates
were identified to the species level based on colony
morphology, Gram staining, and biochemical tests
(indole, methyl red, Voges-Proskauer, triple sugar iron,
citrate, and urea hydrolysis).

Antimicrobial susceptibility testing (AST). AST was
performed on bacterial isolates using the Kirby-Bauer
disk diffusion method on Mueller-Hinton agar, following
CLSI M100 (2020) guidelines [9]. Antimicrobial panels,
were selected based on organism identification.
Interpretation of inhibition zone diameters was performed
according to CLSI M100, 2020.

Organism growth and antimicrobial susceptibility data
were collected and analyzed. Descriptive statistics,
including percentages, were generated using Microsoft
Excel.

RESULTS

Study population characteristics. Of the 86 patients
with clinically diagnosed LRTIs, 52 (60.5%) were
male and 34 (39.5%) were female. The majority
(68.6%) of patients were aged 51-70 years. Positive
cultures were observed in 33 (38.4%) of the 86 BAL
samples. The distribution of microorganisms isolated
from these positive cultures is summarized in Table 1.

Culture results. As shown in Table 1 and Figure 1, K.
pneumoniae was the most frequently isolated organism,
accounting for 12 (36.4%) of the 33 isolates, followed by
Acinetobacter spp. (6 isolates, 18.2%).
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Table 1. Distribution of microorganisms isolated from bronchoalveolar lavage fluid (n=33)

Organism type

Bacteria 31
Fungi 2
Total 33

Number of isolates

Percentage (%)
93.9
6.1
100

Klebsiella Acinetobacter S.aureus Pseudomonas  Candida spp. E.coli S.pneumoniae
pneumoniae spp. aeruginosa
Fig. 1. Distribution of bacterial and fungal isolates from bronchoalveolar lavage fluid
Antimicrobial susceptibility. Antimicrobial erythromycin (40%), and doxycycline (40%). All S.

susceptibility patterns of bacterial isolates are presented
in Tables2 and 3. As shown in Table 2, all S. aureus
isolates were resistant to penicillin, and 60% were
resistant to cefoxitin, indicating methicillin-resistant S.
aureus (MRSA). A smaller proportion of S. aureus
isolates showed resistance to gentamicin (20%),

aureus isolates were susceptible to linezolid; vancomycin
susceptibility was not tested (ND). In contrast, the single
S. pneumoniae isolate was susceptible to penicillin,
erythromycin, vancomycin, clindamycin, linezolid,
levofloxacin, and trimethoprim/sulfamethoxazole (Table
2).

Table 2. Antimicrobial resistance patterns of S. aureus and S. pneumoniae isolates

Antimicrobial S. aureus (n=5) S. pneumoniae (n=1)
Penicillin (P) 5 (100%) 0 (0%)
Cefoxitin (CX) 3 (60%) ND
Vancomycin (VA) ND 0 (0%)
Gentamicin (GEN) 1 (20%) ND
Doxycycline (DO) 2 (40%) ND
Erythromycin (E) 2 (40%) 0 (0%)
Clindamycin (CD) 3 (60%) 0 (0%)
Linezolid (LZ) 0 (0%) 0 (0%)
Ciprofloxacin (CIP) 3 (60%) ND
Levofloxacin (LE) ND 0 (0%)
Trimethoprim/Sulfamethoxazole (COT) ND 0 (0%)

ND: Not determined, as CLSI guidelines do not recommend routine testing for certain organism-antibiotic combinations.

As shown in Table 3, all K. pneumoniae isolates were
resistant to ampicillin. The lowest resistance rate for K.
pneumoniae (25%) was observed against piperacillin-
tazobactam. P. aeruginosa isolates displayed high
resistance rates to ceftazidime (80%) and cefepime (60%)
but were fully susceptible to levofloxacin. Among
Acinetobacter spp. isolates, 83.3% were resistant to
ceftazidime and meropenem, while 66.7% were resistant
to cefepime, piperacillin-tazobactam, and gentamicin.
Notably, 83.3% of Acinetobacter spp. isolates were
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susceptible to minocycline.  Among Gram-negative
isolates, 60% were extended-spectrum p-lactamase
(ESBL) producers, 36% were metallo-p-lactamase (MBL)
producers, and 48% were carbapenemase producers,
determined by CLSI-recommended phenotypic tests.
Both C. albicans isolates were susceptible to fluconazole
and voriconazole, while one exhibited resistance to
itraconazole and the other to ketoconazole, determined by
CLSI M44 disk diffusion testing.
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Table 3. Antimicrobial resistance patterns of Gram-negative bacterial isolates (n=25)

Antimicrobial i (MBI (=)

(%)
Ampicillin (AMP) 12 (100)
Cefazolin (C2) 8 (66.7)
Cefuroxime (CXM) 9 (75)
Cefotaxime (CTX) 11 (91.7)
Ceftazidime (CAZ) ND
Cefepime (CPM) 10 (83.3)
Piperacillin/Tazobactam (PIT) 3 (25)
Amoxicillin/Clavulanate (AMC) 8 (66.7)
Ampicillin/Sulbactam (AMS) ND
Meropenem (MRP) 8 (66.7)
Gentamicin (GEN) 7 (58.3)
Amikacin (AK) 6 (50)
Minocycline (MI) ND
Ciprofloxacin (CIP) 7 (58.3)
Levofloxacin (LE) ND
Trimethoprim/Sulfamethoxazole
(com) 7 (58.3)
Netilmicin (NET) ND

P. aeruginosa (n=5) Acinetobacter spp. (n=6) E. coli (n=2)

(%) (%) (%)
ND ND 2 (100)
ND ND 1(50)
ND ND 2 (100)
ND ND 1 (50)
4 (80) 5(83.3) ND
3 (60) 4 (66.7) 0 (0)
1(20) 2 (33.3) 1(50)
ND ND 0 (0)
ND 4 (66.7) ND
2 (40) 5(83.3) 0 (0)
2 (40) 3 (50) 0 (0)
1(20) 3 (50) 0 (0)
ND 1(16.7) ND
ND ND 2 (100)
0 (0) 4 (66.7) ND
ND 2 (333) 0 (0)
1(20) ND ND

ND: Not determined, as CLSI guidelines do not recommend routine testing for certain organism-antibiotic combinations.

DISCUSSION

The COVID-19 pandemic (2020-2022), overlapping
with the study period, likely reduced BAL specimen
collection due to minimized aerosol-generating
procedures.

LRTIs contribute significantly to morbidity, mortality,
and healthcare costs. This cross-sectional study examined
the microbial profile of BAL fluid from adult patients with
clinically diagnosed LRTIs at a tertiary care center in
India. Our findings showed a male predominance
(60.5%), consistent with studies by Panda et al. (2012,
63%), Vijay et al. (2016, 66%), and Ravichitra et al.
(2019, 71.2%) [10-12]. Male predominance in LRTIs may
be due to higher smoking, tobacco, and alcohol use among
men. These factors impair respiratory immunity via
mucociliary clearance dysfunction, mucus
hypersecretion, airway obstruction, and comorbidities.
However, further research is needed to clarify the
interplay of gender-related biological, behavioral, and
social factors in LRTI susceptibility.

Most patients (68.6%) were aged 51-70 years,
reflecting increased LRTI susceptibility in older adults.
Increased LRTI susceptibility in this age group is due to
age-related declines in immune and pulmonary function.
Chronic respiratory conditions (e.g., COPD, emphysema,
bronchiectasis, post-tuberculosis  sequelae) further
predispose this population to Gram-negative infections.
Cumulative antibiotic exposure in older adults may drive
antibiotic-resistant  pathogens, complicating LRTI
management.

Of 86 BAL specimens, 38.4% yielded positive cultures,
consistent with Padmaja et al. (2021, 38.52%), Dickson et
al. (2014, 39.1%), and Kneidinger et al. (2013, 32.4%)
[13-15]. Of the isolates, 93.9% were bacterial and 6.1%
were fungal. These findings align with Ramana et al.
(2013; 90.3% bacterial, 9.7% fungal) and Sarmah et al.
(2016; 82.6% bacterial, 17.4% fungal) [16, 8]. Gram-
negative bacteria predominated in LRTIs, consistent with
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Palewar et al. (2021), Gebre et al. (2021), and Padmaja et
al. (2021) [13, 17, 18]. These studies reported 76-94%
Gram-negative bacilli and 5.8-24% Gram-positive cocci.

K. pneumoniae was the most frequently isolated
organism, followed by Acinetobacter spp. and S. aureus.
These findings align with Padmaja et al. (2021) and
Madhavi et al. (2012), who identified K. pneumoniae and
P. aeruginosa as predominant LRTI pathogens [13, 19].
This predominance of Gram-negative pathogens informs
empirical antimicrobial therapy selection, as highlighted
by recent guidelines [20]. Clinicians must monitor these
etiological patterns to ensure appropriate antibiotic use in
LRTI management. Conventional culture-based methods
used in this study may limit detection of fastidious or non-
culturable organisms, highlighting the role of microbiome
analysis [21].

Among S. aureus isolates, resistance was most
frequently observed against penicillin, followed by
cefoxitin and ciprofloxacin, and then clindamycin. Lower
resistance to gentamicin (20%) was observed in S. aureus
isolates. Notably, cefoxitin resistance, which is suggestive
of methicillin resistance, was observed in 60% of S.
aureus isolates. Hoban et al. (2003), Bajpai et al. (2013),
and Rajkumar et al. (2016) reported MRSA rates of
43.7%, 55.6%, and 48.2%, respectively [22-24],
indicating high MRSA prevalence. All S. aureus isolates
were susceptible to linezolid, consistent with findings
from Lee et al. (2018) and Bajpai et al. (2013) [21, 22];
vancomycin susceptibility was not tested in our isolates
[23, 24]. Santella et al. (2021) reported that S. aureus
isolates were 84% resistant to penicillin but fully
susceptible to linezolid [25].

The antimicrobial susceptibility profile of K.
pneumoniae isolates showed high resistance, consistent
with Kumar et al. (2013) and Bajpai et al. (2013) [23, 26].
Kumar et al. (2013) and Bajpai et al. (2013) reported K.
pneumoniae resistance rates of 7.3% and 28.9% for
amikacin, 58.7% and 39.6% for gentamicin, and high
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resistance to B-lactam agents [23, 26]. A study by Khan et
al. (2015) reported a 70% gentamicin resistance rate in K.
pneumoniae [27]. High p-lactam resistance in K.
pneumoniae raises concerns about the efficacy of
empirical LRTI treatments, driven by molecular
resistance mechanisms [28]. Lower gentamicin resistance
(58.3%) in K. pneumoniae compared to Khan et al. (2015,
70%) may reflect reduced empirical use [27]. These
resistance patterns highlight the need for ongoing
surveillance and local susceptibility data to guide
empirical antibiotic selection and reduce resistance.

High resistance in Acinetobacter spp. isolates aligns
with Chung et al. (2011) and Shete et al. (2010) [29, 30].
Chung et al. (2011) reported resistance rates of 78.2% for
ceftazidime, 75.9% for ampicillin-sulbactam, and 76.7%
for piperacillin-tazobactam in Acinetobacter spp. [29].
Shete et al. (2010) reported 71.4% ceftazidime and 42.8%
amikacin resistance, while Sohail et al. (2016) found
99.6% ampicillin-sulbactam, 98.3% cefepime, and 99.2%
ceftazidime resistance in Acinetobacter spp. [31]. High
resistance in Acinetobacter spp. is due to its ability to
acquire and disseminate resistance genes and persist in
hospital environments, consistent with recent multicenter
data [32]. P. aeruginosa susceptibility patterns align with
Tripathi et al. (2011), who reported higher ceftazidime
and cefepime resistance and lower amikacin and
meropenem resistance [33]. Ramana et al. (2013) reported
higher cephalosporin resistance and lower
aminoglycoside and carbapenem resistance in Gram-
negative bacteria [16]. P. aeruginosa’s ability to acquire
resistance mechanisms highlights the risks of injudicious
antibiotic use, promoting resistant strain emergence.

Among Gram-negative isolates, 15/25 (60%) were
ESBL producers, 36% were MBL producers, and 48%
were carbapenemase producers, determined by CLSI-
recommended phenotypic tests. These findings align with
Guptaetal. (2017), who reported 54.5% ESBL and 22.1%
MBL producers among Gram-negative isolates [34].
Similarly, Radhika et al. (2015) found that 43.5% of K.
pneumoniae isolates produced either MBL or
carbapenemase enzymes [35]. High ESBL, MBL, and
carbapenemase prevalence in Gram-negative isolates
underscores the need for strategies to combat
antimicrobial resistance, as evidenced by recent
surveillance data [36].

Both C. albicans isolates were susceptible to
fluconazole and voriconazole, per CLSI M44 testing.
However, one C. albicans isolate was resistant to
itraconazole and another to ketoconazole, indicating
potential antifungal resistance, consistent with recent
Indian data [37].

In conclusion, Gram-negative bacilli, primarily K.
pneumoniae and Acinetobacter spp., are the leading LRTI
pathogens in our setting. We observed high resistance to
empirical  antibiotics, including third-generation
cephalosporins and carbapenems. Aminoglycoside
resistance was lower than cephalosporin and carbapenem
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resistance. ESBL, MBL, and carbapenemase production
are major mechanisms of [B-lactam resistance.
Understanding these resistance mechanisms is crucial to
avoid unnecessary B-lactam use and mitigate cross-
resistance. Incorporating B-lactam/p-lactamase inhibitor
combinations, such as piperacillin-tazobactam, may
improve empirical LRTI treatment outcomes. Variable
LRTI etiology and resistance patterns require tailored
antimicrobial therapy. Collaboration between clinicians
and microbiologists is essential for monitoring microbial
trends and antibiotic susceptibility patterns. Regular
research is crucial to update empirical treatment
guidelines, optimizing patient care and reducing
resistance.
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