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ABSTRACT

The SARS-COV-2 virus is the cause of the 2020 pandemic that has infected and
killed millions worldwide. While the upper respiratory tract cells are the primary
targets of COVID-19, the virus can infiltrate other tissues and organs, leading
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to potentially serious complications. The new coronavirus primarily affects
angiotensin 11 receptor and cytokine pathways, which can result in acute
pulmonary inflammation, pulmonary edema, acute respiratory distress
syndrome, vascular endothelial dysfunction, pulmonary embolism in the lungs,
and cardiomyopathy, arrhythmia, heart failure, and intravenous thrombosis in
the heart. COVID-19 infection can be associated with gastrointestinal symptoms
such as diarrhea, vomiting, and abdominal pain. Also, reports of mild and
transient liver damage, polyneuropathy, encephalitis, stroke, acute renal failure,
hypocortisolism, and damage to the hypothalamus and pituitary system are
available. COVID-19 can also be associated with skin symptoms such as rash,
urticaria, maculopapular lesions, and vascular lesions such as chill blain,
petechiae purpura, and scalpopathy. This narrative review evaluates the
pathogenesis of novel coronavirus on body organs based on relevant published
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papers and reference books.

INTRODUCTION

On January 30, 2020, the World Health Organization
(WHO) officially named the pneumonia infection caused
by the SARS-COV-2 virus COVID-19. Itis a giant single-
stranded RNA virus belonging to the Coronaviridae
family and the Nidovirales order. The phylogenetic
analysis of the COVID-19 genome from Wuhan, China,
revealed it belongs to the B-CoV-2 receptor [1].

The virus has the typical protein appendages on
membranes and comprises proteins, nucleoproteins, and
membrane proteins such as polymerases, proteases,
helixes, and other auxiliary proteins [2].

The 96.2% similarity sequence of this virus and those
in the bat Rhinolophus affinis in the Wuhan city of China
indicated bats as the probable natural host. Also, the
genetic differences hinted at another intermediate host,
e.g., the small mammalian pangolin, harboring a strain
with 99% similarity to the COVID-19 genome. Once
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COVID-19 S protein binds to Angiotensin-converting
enzyme 2 (ACE-2) receptors, it can enter the target cells
in the upper respiratory tract, potentially leading to the
clinical symptoms of acute respiratory distress syndrome
in 4% of cases. The significant affinity between the
coronavirus and these receptors indicates that populations
with higher ACE-2 expression are more at risk of
infection with this virus [3].

Although the overall mortality rate of this virus is 3.4%,
it is significantly higher in elderly individuals and those
with underlying health conditions [4]. The most common
infection routes in humans include direct transmission by
respiratory droplets and saliva when coughing and
sneezing, person-to-person transmission, and contact with
the oral, nasal, and eye mucous membranes. Indirect
transmission is also possible through contact with
contaminated surfaces. The virus may remain for several
days and act as a secondary source [5].
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The incubation period is 2-14 days after the virus enters
the body [6-7]. The prevalence of the virus is slightly
higher in men than in women. After the incubation period,
most infected people have clinical symptoms of mild to
moderate respiratory illness, such as fever, dry cough,
fatigue, muscle aches, and shortness of breath. Most of
them can be cared for at home without particular treatment
protocols. Older people with underlying diseases, such as
cardiovascular disease, high blood pressure, diabetes,
obesity, chronic respiratory disease, or cancer, are
typically more susceptible to a severe form of the virus.
Clinical symptoms in severe patients include shortness of
breath, chronic pain or pressure in the chest, and bruising
of the lips or face [7-9]. Complications such as
pneumonia, respiratory hypoxia, shock, multiple organ
failure, thromboembolism, gastrointestinal bleeding,
polyneuropathy, and myopathy lead to extended
hospitalization and potentially fatal outcomes.

Laboratory results in these patients show the
Erythrocyte Sedimentation Rate (ESR), high D-dimer

Table 1. COVID-19 strains and pathogenesis

level, and lymphocyte reduction (lymphocytopenia) in the
peripheral blood sample [7-10].

The infecting mechanism of coronavirus is primarily
associated with angiotensin Il receptor and cytokine
pathways, which can cause acute pulmonary
inflammation, pulmonary edema, acute respiratory
distress syndrome, vascular endothelial dysfunction, and
pulmonary embolism in the lung and cardiomyopathy,
arrhythmia, heart failure, intravenous thrombosis in the
heart. These are the leading causes of the high death rates
in these patients. This review aims to evaluate the
pathogenesis of novel coronavirus on body organs.

METHOD

This paper discusses the pathogenesis of the new
coronavirus on body organs, the impact on some vital
organs, and the molecular mechanisms involved in this
disease based on 184 articles available in various online
databases such as Web of Science, Scopus, Pubmed, and
reference books. However, different COVID-19 strains
affect the body's organs, as summarized in Table 1.

Variants Being Monitored (VBM)

References for Pathological effects
[11-13]
[12-16]
[12-14, 17, 18]
[12-14, 18]

[13, 19, 20]

[13, 21, 22]
[13, 23, 24]
[13, 25, 26]
[13, 27, 28]
[13, 28, 29]
[13, 30, 31]

The variant of Interest (VOI)
Currently, no SARS-CoV-2 variants are designated as VOI.
The variant of Concern (VOC)

WHO Label Pango Lineage
Alpha B.1.1.7 and Q lineages
Beta B.1.351 and descendent lineages
Gamma P. 1 and descendent lineages
Delta B.1.617.2 and AY lineages
Epsilon B.1.427
B.1.429
Eta B.1.525
lota B.1.526
Kappa B.1.617.1
N/A B.1.617.3
Zeta P.2
Mu B.1.621, B.1.621.1
B.1.1.529
BA.l
BA.1.1
Omicron BA.2
BA3
BA.4
BAS5

[12-14, 18, 32, 33]

Pulmonary effects

Inflammation related to a viral infection can lead to
cellular transformation by activating several carcinogenic
pathways. COVID-19 infection and cancer in various
organs are the leading causes of concern. SARS-CoV-2
infection can activate some carcinogenic pathways that
persist within cells for extended periods, causing
inflammation and cellular transformation. These
pathways may remain active even after virus clearance
[34-35].

These issues can have severe effects on patients with
SARS-CoV-2. For example, MERS can activate various
carcinogen factors such as MEKK, MAPK, ATF2, C-Fos,

J Med Microbiol Infect Dis

p90RSK, Raf-1, and JNK by mediating AP-1 while
suppressing the autophagy regulation of Bcl-2 family
proteins [36, 37].

Infected individuals may experience alveolar
dysfunction, regulated expression of the ACE2 receptor,
immunosuppressive cytokines, and cytotoxic immune cell
dysfunction [38, 39]. A CT lung screening may indicate
the presence of Ground Glass Opacity (GGO) within the
patient’s lungs. GGO can cause blurred vision, absence of
bronchi, vascular area, slight alveoli collapse, and
thickening of the interstitial space, commonly more
reported in high-risk populations [40, 41].
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Therefore, the central organ targeted by SARS-COV-2
infection, the lungs, is easily impaired. In the later stages
of COVID-19, shortness of breath, pneumonia symptoms,
and hypoxia are common clinical manifestations that can

Effects of ACE inhibitor use
SARS-CoV-2 receptor or cofactors

Pathological effects of COVID-19

be lethal to patients. It activates metallopeptidase domain
17, causing acute pulmonary inflammation and cytokine
and leukocyte infiltration into the alveolar space, which
can lead to pulmonary edema (Fig. 1) [42-43].

Other RAAS genes

ACE
p=0917

: 114

4l .
10

74 i

i " 94
6

Expression (log2 CPM)
Expression (log2 CPM)

ACE2 TMPRSS2 ADAM17
p=0-031 804
= = = 757
o o a
o - “
~ ~ ~
g g 8 70+
= = z
(<] c o
2 3 ]
< o & 654
& & &
w - -
. 60+
p= 0199
T T
Yes 0

ACE inhibitor use ACE inhibitor use

ACE inhibitor use

T T
es No Yes No Yes
ACE inhibitor use ACE inhibitor use

Effects of ARB use

71 p=0-689 p=0770 p=0-021
= : £ A ; = = =
a 6 o H a o o
v 8 v J w v
~ ~ ~ o~ ~
[=J [=J o = o
L L 2 L L
£ Sl i £ £
[+ . -8 A a S =%
& i P! fin} &S &

4

9 —
T Ty l T T
No Yes Yes No Yes
ARB use ARB use ARB use

Effects of COPD

77 p=0:028 p=0035
_ - 114 —_ —_ _
= = = = =
o o a = [
U 6 ) o o o
~ ~ ~ ~ ~
o> o o > o>
ji- L 2 =] L
8 § 104 § 8 8
Z Z % & Z
g 51 g g g g
& & 3 £ 2
Pl & & [l [l

91 5 3
4 p «0-339 p=0-017 p=5-64x10"
T PR (R T T T T ) PR o
No Yes No Yes No Yes No Yes

CoPD COPD

Fig. 1. Expressmn of SARS-CoV-2 receptor or cofactors and RAAS-related genes in human lung tissue gene expression
and phenotype data from 1051 participants in the Lung eQTL Study. Violin plots illustrate the distribution of gene
expression levels in log2 CPM (outliers have been removed). Superimposed box plots display the median (IQR). P-

values were derived from robust linear models adjusted for current smoking status. ARB=angiotensin Il receptor
blocker. COPD=chronic obstructive pulmonary disease. CPM=counts per million. eQTL=expression quantitative trait
loci. RAAS=renin-angiotensin-aldosterone system. SARS-CoV-2=severe acute respiratory syndrome coronavirus 2,

[43].

In response to viral infection, excessive systemic
inflammation against COVID-19 disease leads to
cytokine storms and respiratory problems, with the
highest mortality [44]. Pulmonary complications such as
acute respiratory distress syndrome (ARDS), vascular
endothelialization, sepsis, pulmonary edema, and
pulmonary embolism occur following a COVID-19
infection [44-46]. A multi-center study conducted across
235 hospitals in 24 countries, which included 1128

J Med Microbiol Infect Dis 3

patients and 294 confirmed COVID-19 cases, indicated
that up to 51.2% of subjects experienced pulmonary
complications after surgery. This study attributed most
deaths to pulmonary embolisms [46]. The results also
showed increased thrombosis and microangiopathy in
COVID-19 compared with influenza. Moreover, acute
respiratory failure and cytokine storms, which reduce
oxygen delivery, could potentially result in acute
myocardial damage in these patients [47].
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Poor baseline health is associated with an increased risk
of severe respiratory complications from the coronavirus.
Although rare, respiratory muscle dysfunction is more
prevalent in patients with poor baseline health,
particularly those with obesity [48]. In a cross-sectional
study conducted by Panroni et al. (2021), recovering
patients discharged from the COVID-19 ward were
evaluated for improved skeletal muscle strength and
physical performance (using 1-min sit-to-stand and short
physical performance battery tests), as well as dyspnea,
fatigue, and single-breath counting. The high prevalence
of impaired skeletal muscle strength and physical function
in hospitalized patients with improved COVID-19
pneumonia without prior motor disability indicated the
need for ongoing physical function follow-up and
rehabilitation programs [49].

Cardiac effects

Patients with baseline cardiovascular disease have a
higher mortality rate (10.5%) than those with chronic

respiratory disease (6.3%). Patients with cardiovascular
disease (CVD) may have more severe COVID-19 disease
with higher mortality. It is mainly because of a more
elevated angiotensin-converting enzyme (ACE) in the
cardiovascular system, which acts as a gateway for the
virus to enter the lungs and heart [50]. Respiratory and
acute cardiac diseases are significant clinical symptoms
that can be observed in patients during the later stages of
SARS-COV-2 infection [51].

Patients with coronary artery disease or heart failure are
at a higher risk of developing heart damage. When such
patients become infected with SARS-COV-2, they are at
serious risk for myocardial infarction or heart failure. This
unexpected deterioration can increase the need for
hospitalization, resulting in a higher mortality rate [52].
Cardiac complications associated with COVID-19 include
myocardial dysfunction, cardiomyopathy, arrhythmias,
and heart failure (Fig. 2) [53-55].

Viral entry, replication,
and ACE2 down-regulation
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Fig. 2. Interaction between SARS-CoV-2 and the renin—angiotensin—aldosterone system [55].

Respiratory arrest, as well as cardiovascular
complications, respiratory and cardiac arrest, high blood
pressure, diabetes, ischemic heart disease, and heart
failure, are considered to be the most significant risk
factors for mortality [53]. The renin-angiotensin-
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aldosterone system (RAAS) is an enzyme cascade that
plays a crucial role in maintaining circulatory
homeostasis, fluid balance, and systemic vascular
resistance, all of which contribute to regulating
cardiovascular systems and controlling blood pressure
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[56]. Angiotensin-converting enzyme 1 (ACEl) is
responsible for converting angiotensin 1 (Ang-l) to
angiotensin Il (Ang-Il), which then activates the
angiotensin receptor type 1 (AT1R) and can lead to
vasoconstriction, inflammation, fibrosis, and proliferation
[57].

Then, ANGII is inactivated by converting to
angiotensin-1-7 through ACE2. Angiotensin binds to the
MAS receptor (MAS-R) and has anti-inflammatory and
vasodilator effects. ACE2 can also convert Ang-l to
angiotensinl-7, albeit with lower affinity, which may help
prevent the progression of hypertension, cardiac
hypertrophy, and heart failure [58]. An increase in the
ACE2/ACEL ratio can help protect against endothelial
functions and vasoconstriction, and activation of
extracellular ACE2 can weaken thrombus formation and
reduce platelet aggregation [59-60].

However, SARS-COV-2 enters the cardiovascular
cellitissue by binding to ACE2 receptors. An elevated
level of ACE2, as a biomarker of cardiovascular disease,
including in patients with heart failure, may indicate that
these patients are more susceptible to COVID-19
infection [61]. Measurements of plasma angiotensin
peptides and plasma ACE?2 levels can indirectly assess the
treatment and status of the renin—angiotensin—-aldosterone
system in COVID-19 patients [62].

The mechanisms of heart damage are still unclear.
Undoubtedly, the difference between increased metabolic
demand and poor cardiovascular storage may be one of
the potential mechanisms that can affect heart function
and the possible direct effects of pneumonia. Another
mechanism can be overexpression of the angiotensin-
converting enzyme 2 (ACE2) in heart tissue [63]. In
patients with pre-existing cardiovascular disease, the
symptoms of COVID-19 appear to be more severe. Also,
the expression of ACE2 increases in these patients. So, by
better understanding COVID-19 damage to the heart and
its pathways, the treatment provided to these patients can
be accurate and effective, leading to reduced mortality.
Administration of ACE inhibitors or angiotensin 1l
receptor blockers may be justified and beneficial in cases
where severe metabolic demand and cardiac dysfunction
are observed, especially in patients with hypertension,
diabetes, and heart disease [64].

Evidence suggests that these drugs can regulate ACE2,
the receptor used by SARS-COV-2 to attack host cells.
However, given the critical role of ACE2 in SARS-CoV-
2 infection, it is essential to exercise caution when
considering the potential effects of antihypertensive drugs
that involve angiotensin receptor blockers or ACE
inhibitors in hospitalized COVID-19 patients, mainly as
these drugs may increase the level of ACE2 [65]. A
comprehensive case report of 138 patients showed that
16.7% had arrhythmia and 7.2% had acute heart damage
[66].

J Med Microbiol Infect Dis
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Other mechanisms for heart damage include
overexpression of cytokines activated by type 1 and 2 T-
helper cells [50], hypoxemia, and respiratory dysfunction
stimulated by SARS-COV-2 [67]. Inflammatory markers,
such as high-sensitivity C-reactive protein (hs-CRP) and
cardiovascular risk-related cytokine levels, are associated
with adverse outcomes and can serve as biomarkers and
risk factors [68]. Currently, no targeted treatment for
COVID-19 is available, and management mainly involves
controlling the spread of the disease by implementing
travel restrictions, quarantining infected patients, and
providing supportive care.

Myocarditis

Myocarditis is characterized by heart muscle
inflammation, often a dual viral infection. This condition
can cause inflammation that disrupts the heart's electrical
system, leading to arrhythmias and cardiac arrest [69]. To
diagnose this condition, physicians may use standard
methods such as the electrocardiogram (ECG), magnetic
resonance imaging (MRI), or measure the amount of
troponin I (cTnl) in the heart. COVID-19 patients with
severe disease may experience systemic
hyperinflammatory syndrome. The data suggests that an
adverse inflammatory response or cytokine storm may
occur in response to COVID-19 treatment [70],
highlighting the critical role of ACE2 signaling in
COVID-19 disease. Several reports have identified the
development of myocarditis in patients with COVID-19
infection [71-74].

Myocarditis patients typically exhibit specific
characteristics such as left ventricular hypertrophy
(LVH), high left ventricular volume, and a reduced
ejection  fraction (35%), as determined by
echocardiography. Furthermore, the left ventricle
typically retains normal wall movement despite elevated
plasma troponin levels (9.0 ng/ml). These reports indicate
that patients with COVID-19 infection are prone to
myocarditis, especially if they have underlying conditions
like hypertension or other cardiovascular diseases [75,
76]. Physicians are mindful of these risk factors and watch
for myocarditis in COVID-19 patients [75, 76].

Recent clinical and epidemiological evidence suggests
that metabolic disorders, hypoxia, and SARS-CoV-2-
induced myocardial infarction contribute significantly to
the pathophysiology of myocardial injury and the
prevalence of arrhythmic complications [77]. A study
conducted in Wuhan, China, on 138 COVID-19 patients
revealed that cardiac arrhythmias were a significant
complication in 23 ICU patients (16.7%) [74].

Cardiac arrhythmias are notably more prevalent in ICU
patients compared to non-ICU patients. COVID-19-
induced myocarditis coupled with cardiogenic shock can
trigger atrial and ventricular arrhythmias, exacerbating
the severity of COVID-19 complications [78, 79]. Given
the risk that COVID-19 poses to cardiac health, healthcare
professionals must take additional precautions and
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implement exceptional management practices. Current
clinical data suggests that possible myocardial injury is a
considerable challenge for hospitalized COVID-19
patients and has been linked to a high mortality rate.
Therefore, multidisciplinary evaluation, including blood
pressure control in patients with hypertension, and
cardiovascular assessment, is essential for managing
COVID-19 infection [80].

While we do not yet fully understand the molecular
mechanism of heart damage and cardiac arrhythmia
caused by the SARS-CoV-2 virus, overexpression of
ACE-2 receptors in the heart has been shown to play a
critical role in the accumulation of the virus in cardiac
tissue, leading to increased inflammation and heart
damage [81]. Another study using potent human stem
cell-derived cardiomyocytes (hiPSC-CMs) found that
SARS-COV-2 can directly infect hiPSC-CMs, leading to
apoptosis and cardiac arrest after 72 hours of infection
[82]. COVID-19 patients with  cardiovascular
complications typically exhibit slight increases in Tnl,
NT-proBNP, interleukin-6 (IL-6), and other cytokines.
Also, the roles of chemokine 10 (CXCL10), chemokine 2
ligand (CCL2), granulocyte-macrophage colony-
stimulating factor (GM-CSF), and tumor necrosis factor-
o (TNF-a), which are abundant in the bloodstream of
COVID-19 patients, remain unclear [54, 83, 84].

Severe inflammation or cytokine storm due to immune
dysregulation may cause heart damage [85].
Epidemiological studies involving other viral RNAs show
that once the virus enters the cytoplasm of
cardiomyocytes, it transcribes viral RNA and translates it
into viral structural proteins to produce a complete
infectious virus that infects the cell [86]. Eventually, the
virus infecting heart tissue can lyse its cells, triggering the
innate immune response by inducing proinflammatory
cytokines. This can ultimately stabilize inflammatory
coronary artery plaques and disrupt left ventricular
function [87].

This systemic inflammation is the critical mechanism
of heart damage in COVID-19 patients with severe
cardiovascular complications [87]. Studies have shown
that Notch signaling plays a crucial role in maintaining
cardiovascular homeostasis, including the progression of
atherosclerosis and ventricular regeneration after
myocardial infarction. Therefore, targeting Notch
activation with secretase inhibitors (GSI) may influence
treatment strategies for preventing virus entry into heart
cells by reducing ADAM17. ADAM10/ADAM17
expresses the Notch on the cell membrane, leading to its
final cleavage by y-secretase and the creation of an active
Notch intracellular domain that regulates the transcription
of target genes in the nucleus. Furthermore, Notch
activation modulates the activity of both innate and
adaptive immune reactions by macrophage polarization
[88].

Effects on blood pressure

J Med Microbiol Infect Dis

Clinical data suggest that hypertension is a crucial
factor in COVID-19 mortality, with a significantly higher
risk of COVID-19 in hypertensive individuals. A
comparative analysis of severe COVID-19 complications
versus mild to moderate disease concluded that CVD was
significantly associated with increased disease severity
and complications in patients [89]. In addition, another
study of 191 patients from two hospitals in Wuhan, China,
reported that 48% of patients had baseline factors: 30%
high blood pressure, 19% diabetes, and 8% coronary heart
disease [54].

Another study involving 1591 COVID-19 patients
(between February 20 to March 18, 2020) with a mean age
of 63 years from Lombardy, Italy, showed that 68% of
patients % had at least one underlying disease such as
hypertension (49%), hypercholesterolemia (18%), or
diabetes (17%) [72]. Elderly patients, particularly older
men with hypertension, may be at a higher risk of
infection and experience a higher mortality rate than
younger people. Patients with high blood pressure are
typically treated with ACE inhibitors (ACEi) and
angiotensin 1l receptor blockers (ARB). However, these
treatments can significantly increase ACE2 expression by
activating negative feedback against low Ang-l in the
system [90].

Given that ACE2 is a preferred receptor for SARS-
COV-2, there is a theoretical concern that patients with
hypertension treated with ACEI/ARB may be at an
increased risk for severe COVID-19. However, no clinical
data support this hypothesis, and no evidence suggests
using ACEi or ARB (type-I receptor blockers) is a risk
factor in COVID-19 patients [58]. Several studies have
demonstrated the potential therapeutic effect of ACEi or
ARB in preventing COVID-19 infection [91, 92].
Furthermore, Independent studies conducted on
hypertensive patients found no association between the
use of ACEi or ARB and an increased risk of mortality in
COVID-19-positive cases [93, 94].

Therefore, further research is essential to clarify the
contradictory hypotheses regarding using ACEi or ARB
to control blood pressure in patients with hypertension
during viral infections. SARS-COV-2 enters cells via
ACE2 receptors and reduces ACE2 regulation by
intracellular degradation after overbinding to the receptor.
This degradation process can minimize the degradation of
Ang-1l and activate ATIR, inducing a myocardial
hyperinflammatory reaction that decreases blood pressure
[58].

Effects on blood vessels

Endothelial cell damage is a critical factor in the
pathogenesis of multiple organ failure in COVID-19. The
endothelium, one of the largest organs in the human body
[73], expresses ACE2 receptors that allow viral entry and
contribute to major clinical diseases such as hypertension
[72-76], kidney disease [77], cerebrovascular disease, and
neurological disorders [78, 79].
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Endothelial cells play a crucial role in protecting the
cardiovascular system by releasing essential proteins that
regulate blood clotting and the immune response.
Endothelial damage can result in excessive cardiovascular
damage and causes temporary heart attacks in COVID-19
patients.  Endothelial cell damage may cause
inflammation of blood vessels, leading to plaque rupture
and heart attack. In COVID-19 patients, the destructive
response of the immune system and cytokine storm can
cause inflammatory heart failure and worsen the condition
of the heart. Also, fibrosis occurs in tissue by free radicals
following endothelial dysfunction [95].

In COVID-19 patients with underlying diseases, the
endothelial dysfunction’s response to infection can
activate the coagulation pathways [84-96]. Krill et al.
(2020) and Bompard et al. (2020) reported the possibility
of deep vein thrombosis and acute pulmonary embolism
in COVID-19 patients [97, 98]. These data support the
association between baseline endothelial disorder and
increased risk of venous thromboembolism, systemic
vasculitis, endothelial cell apoptosis, and inflammation in
various organs in SARS-COV-2 infected patients [45, 99-
101].

The virus is known to bind to the ACE2 receptors
expressed on endothelial cells, causing damage to host
tissue. This can lead to infection and inflammation in
vascular endothelial cells [45, 102-103]. Patients with
arterial infection caused by coronavirus often exhibit
vascular inflammation, endothelial dysfunction, and
excessive coagulation. Some studies have reported
abnormalities in the coagulation system in patients with
novel coronavirus pneumonia (NCP), which can rapidly
induce thrombus formation [45, 102].

Gastrointestinal symptoms

Although patients with COVID-19 usually exhibit fever
and respiratory symptoms, some may experience
gastrointestinal symptoms such as diarrhea, vomiting, and
abdominal pain. Studies have identified the presence of
SARS-COV-2-RNA in anal swabs and fecal samples of
COVID-19 patients, even after clearance of the virus in
the upper respiratory tract. In addition, the ACE2 receptor
enzyme is expressed in gastrointestinal epithelial cells,
indicating that SARS-COV-2 can actively infect and
proliferate in the gastrointestinal tract. This is important
for disease management, transmission, and infection
control [104].

Liver effects

Liver damage caused by SARS-COV-2 is typically
mild, transient, and reversible, with hepatocellular injury
being more common than cholestatic injury. The exact
mechanism of SARS-COV-2 liver damage remains
unclear, but drug-induced liver injury and secondary liver
injury may be caused by systemic inflammatory response
syndrome or hypoxia in COVID-19. However, further
investigation is needed to understand the underlying
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mechanism fully. Healthcare professionals should
carefully manage existing liver diseases and regularly
monitor the liver function of patients with COVID-19.
Liver-protective anti-inflammatory drugs may be
essential in managing liver damage associated with
COVID-19 [105].

The Central Nervous System (CNS) effects

Neurotropic viruses can enter and invade nerve tissue,
causing significant damage to the structure and function
of the nervous system. They can also cause infections in
the CNS's immune system components, such as
macrophages, microglia, or astrocytes [106]. Viral
infections in the CNS can result in injuries such as severe
encephalitis, toxic encephalopathy induced by severe
systemic viral infections, and severe acute myelination
lesions [107].

SARS-COV-2 is very similar in genomic sequence and
clinical symptoms to SARS-CoV and MERS-CoV.
Previous clinical and preclinical evidence has reported
that the brain is the primary target of coronaviruses [108].
SARS-CoV and MERS-CoV were also identified in the
cerebrospinal fluid (CSF) of patients infected with these
viruses in the early 2000s [109]. In addition, SARS-CoV
virus antigen was significantly detected in several brain
regions of infected patients, including olfactory bulbs,
piriform, cortical layers under the limbic, basal ganglia
(abdominal pallidum and areas before lateral cavity), and
midbrain (dorsal raphe) [110].

SARS-CoV can also induce neurological diseases such
as polyneuropathy, encephalitis, and ischemic stroke
[111]. Autopsies have shown that most SARS-CoV cases
exhibit cerebral edema and dilation of the meningeal
arteries. In addition, infiltration of monocytes and
lymphocytes into the vessel wall, ischemic changes in
nerve cells, nerve fibers demyelination, SARS-CoV-1
particles, and genome sequences in the brains of SARS-
CoV-1 infected patients have been reported [112, 113].

Approximately 1.5% of patients with MERS-CoV
infection have shown neurological symptoms, including
impaired consciousness, paralysis, ischemic stroke,
Guillain-Barré syndrome, and other intoxications or
infectious neuropathy [114]. Given the genetic
similarities between SARS-CoV-2 and other viruses
within  the  beta-coronavirus  family, observing
neurological symptoms and complications in COVID-19
patients is unsurprising. Various studies have reported
that over one-third of COVID-19 patients exhibit different
neurological symptoms such as 1) central nervous system
symptoms including; headache, lethargy, unsteady gait,
restlessness, cerebral hemorrhage, meningitis and brain
stroke, ataxia, epilepsy, 2) peripheral nervous system
symptoms such as taste disturbance, olfactory
dysfunction, and visual impairment in a large number of
COVID-19 patients report, suddenly. Therefore, patients
with COVID-19 may have a higher likelihood of

2023 Vol. 11 No. 1


http://dx.doi.org/10.52547/JoMMID.11.1.1
http://jommid.pasteur.ac.ir/article-1-475-en.html

[ Downloaded from jommid.pasteur.ac.ir on 2025-11-16 ]

[ DOI: 10.52547/JoMMID.11.1.1]

Ahmadzadeh et al.
experiencing anosmia, dysgeusia, and skeletal muscle
damage [115-117].

A study involving 241 COVID-19 patients found that
over one-third exhibited neurological manifestations, with
severity varying depending on the progression of the
disease. For example, patients with more severe infections
showed acute cerebrovascular disease, impaired

~ -
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r

consciousness, and skeletal muscle injury [117]. A
different  study highlighted acute  necrotizing
encephalopathy (ANE) in a COVID-19 patient through
magnetic resonance imaging (MRI). The brain MRI
revealed a subdural hematoma and increased bilateral
intra-thalamic lesions in the internal temporal lobes and

subinsular area (Fig. 3) [118].

2

Fig. 3. Chest CT imaging of the patient with COVID-19. On the chest CT scan, a patchy, high-density blurred shadow was observed
in the upper lobe of the left lung (Fig. 1A), and a patchy ground glass shadow was detected in the anterior segment of the upper lobe
of the right lung (Figure 1B). Following treatment, a subsequent chest CT scan showed that the previous lesions had almost been
absorbed [118].

SARS-COV-2 entry and action on the CNS

Although several ways are suggested for SARS CoV-2
to enter the nervous system, the exact means by which it
affects the nervous system remain unclear. However,
viruses” genetic material and proteins found in
cerebrospinal fluid (CSF) and CNS tissue samples
indicate that the virus directly attacks the central nervous
system. The virus can also enter the brain via the
circulatory system. Infection of the CNS by the virus can
occur through viral transcytosis in endothelial cells of the
blood-brain barrier (BBB) or by infecting the epithelial
cells of the blood-brain-cerebrospinal fluid (BCSFB) in
the choroidal network (CP) of the ventricles [119, 120].

Viruses can migrate by infecting the sensory or motor
nerve endings, whereby they achieve retrograde or
anterograde neurotransmission through motor proteins,
dynein, and kinesins [121]. One of the neural pathways is
transmission through neurons and olfactory bulbs in the
nasal cavity [122]. Thus, after CoV enters the nasal cavity
and infects its cells, it can reach the brain and
cerebrospinal fluid through the olfactory nerve and bulb

J Med Microbiol Infect Dis 8

within seven days, causing inflammation and a
demyelinating reaction. Removal of the olfactory bulb in
mice limits CoV attack in the CNS [123].

COVID-19-induced nerve injury can also occur via
hypoxia and increased anaerobic metabolism in the
mitochondria of brain cells. Acid accumulation can cause
dilation of cerebral arteries, swelling of brain cells,
interstitial inflammation, obstruction of cerebral blood
flow, and even ischemia and congestion headaches.
Prolonged hypoxia can worsen cerebral edema and
circulatory disorders, leading to increased blood pressure
in the brain. This can gradually cause brain dysfunction,
drowsiness, sciatica, and coma [124].

Severe hypoxia is common among COVID-19 patients
[125] and can cause irreversible neurological damage to
the CNS. The immune system may also damage the
nervous system in response to viral infection [126]. The
pathology of severe viral infections is often closely related
to developing a systemic inflammatory response
syndrome (SIRS). SIRS can start abnormally in severe
COV-induced pneumonia. However, taking early anti-
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inflammatory action can help prevent damage to the
immune system and reduce the risk of damage to the
nervous system [127].

In addition, SARS and COVID-19 have resulted in
numerous deaths, many of which are caused by multiple
organ failure (MOF) resulting from SIRS following viral
infection or SIRS-like immunodeficiency disorders [128,
129]. A neurotropic virus may stimulate glial cells and
induce a proinflammatory state [130]. This becomes
particularly relevant when considering Interleukin-6 (IL-
6) is a proinflammatory cytokine directly associated with
COVID-19 symptoms [131]. In addition, in vitro studies
have reported that cultured glial primary cells can secrete
large amounts of inflammatory agents such as IL-6, IL-
12, IL-15, and TNF-a following CoV infection [123].
These can also cause chronic inflammation and may even
lead to brain damage. ACE2 has been identified as a
cardiovascular protective factor in several organs,
including the nervous system and skeletal muscle [132].

SARS-COV-2 may invade nerve tissue via ACE2 or
TMPRSS2 receptors [119]. Interestingly, the ACE2
receptors are also expressed on the spinal cord membrane,
and the virus may invade the spinal cord by binding to
ACE?2 receptors on the surface of neurons. Thus, ACE2 is
an essential target for various CoV and influenza viruses
[50]. The binding of the COVID-19 virus to ACE2
receptors may cause an abnormal increase in blood
pressure and an increased risk of cerebral hemorrhage
[133]. Serum samples from COVID-19 patients indicate a
change in blood coagulation and long-term prothrombin
[134].

As a precautionary measure, hypertensive patients with
SARS-COV-2 are advised to avoid using ACE inhibitors
or angiotensin Il receptor blockers (ARBs) as
antihypertensive drugs and blockers. Instead, other
classes of antihypertensive medications - such as calcium
channel blockers or diuretics - should be considered [135].
SARS-COV-2 may also penetrate the cribriform plate
near the olfactory bulb (OB) and olfactory epithelium
(OE), allowing it to potentially inhibit olfactory receptor
neurons (ORNS) or non-neuronal cells situated in the OE.
This could occur through the use of ACE2 or TMPRSS2
receptors by the virus [110].

ACE2 and TMPRSS2 receptors have a high-level
expression in the olfactory mucosa of both humans and
mice, and their expression is increased with age in the
mouse model [136]. The ACE2 receptor is expressed in
neurons and glial cells [122]. Thus, older adults may have
a greater risk of SARS-COV-2 accumulation in OE cells
[137]. Besides the olfactory nerve, the virus may also use
other peripheral nerves- such as the trigeminal nerve or
the sensory nerves of the vagus nerve- involved in the
respiratory, including those connected to the larynx,
trachea, and lungs [138].

Kidney effects

J Med Microbiol Infect Dis

Pathological effects of COVID-19

There is a link between coronavirus and acute kidney
injury, as the virus can spread through the circulatory
system and reach kidney cells, ultimately leading to
kidney damage and elevated levels of blood urea nitrogen,
serum creatinine, and uric acid [128, 139]. According to
the Kaplan-Meier analysis, patients with kidney disease
had a significantly higher mortality risk during
hospitalization. Notably, the prevalence of renal disease
and the development of AKI during hospitalization is high
in these patients and can be associated with in-hospital
mortality. Given the significant impact of COVID-19 on
kidney health, physicians should be mindful of the
potential risks to patients with pre-existing kidney disease
[128]. Studies suggest that in-hospital mortality rates are
3-9% higher in patients with acute kidney injury than
those with chronic kidney disease [139-141].

Mechanism: First, COVID-19 uses the ACE Il receptor
to enter kidney cells. Infection in kidney cells is very high
and comparable to lung cells, with SARS-COV-2 able to
infect both distal and proximal cells and renal tubules. The
presence of virus RNA in patients' urine samples indicates
that the virus can infect kidney cells. As a result, there is
an increase in the production of inflammatory factors such
as IL2, IL7, IL10, GSCF, IP-10, MCP-1, MIP1A, and
TNF-o [142-143], which can ultimately lead to
inflammation and edema in kidney cells [139].

Furthermore, SARS-COV-2 has been shown to damage
the renal tubules by penetrating the renal parenchyma and
increasing levels of inflammatory cells such as CDA4+,
CD56+, CD68+, and macrophages [144]. This can result
in the death of tubular cells, particularly renal tubular
cells. Over time, the immune cells may lead to fibrosis,
apoptosis, and changes in the arteries of kidney cells
[145]. C5b-9 is not present in healthy kidney cells.
However, when inflammatory cells and cytokines impact
the renal parenchyma, C5b-9 can attack cell membranes,
ultimately damaging kidney cells and releasing free
radicals. Thus, the indirect presence of cytokines can
cause hypoxia, shock, and rhabdomyolysis [145], finally
making the kidneys more vulnerable to hypoxia. This lack
of adequate blood supply can lead to ischemia and
insufficient blood flow. Ischemia can trigger the
production of hypoxia-inducible factor 1 (HIF-1), which
in turn can lead to the generation of free radicals. HIF-1
can stimulate the expression of genes that promote the
formation of fibrous connective tissue and, combined with
a cytokine storm and increased levels of free radicals, can
lead to nephron damage and cell death [146-147].

Fever-induced dehydration or reduced water intake,
especially in older adults, can lead to various
consequences, including reduced filtration, acute kidney
damage, hypoxia and ischemia in the kidney, shock, and
acute necrosis of the renal tubules. Other possible
systems, such as sepsis caused by COVID-19, lead to
cytokinin syndrome, causing a direct attack of the virus
on the kidneys, interstitial cells, tubules, and cytopathic
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effect on kidney cells. In all cases, the virus attacks the
kidney cells via the ACE2 receptors [148-149].

Involvement of the kidneys in COVID-19 can occur
through direct or indirect mechanisms and is frequently
observed in the form of proteinuria and acute kidney
injury (AKI). Kidney injury caused by SARS-COV-2 is
expected to be multifactorial. SARS-CoV-2 can directly
infect kidney cells, including proximal tubular glandular
cells, and utilize the angiotensin-converting enzyme
(ACE2) pathway to cause acute tubular necrosis, protein
leakage in the Bon Bowman’s capsule, collapsing
glomerulopathy, and mitochondrial dysfunction. Immune
responses to infection, such as cytokine storm,
macrophage activation syndrome, and lymphopenia, may
contribute to the development of AKI. Other potential
mechanisms of AKI include organ interactions,
endothelial dysfunction, and hypercoagulation.

Skin manifestations

Despite increasing reports of cutaneous
manifestations in COVID-19 patients, the exact
prevalence and pathophysiological mechanisms of
these manifestations remain unclear. Moreover,
whether the virus plays a direct or indirect role in
their pathogenesis is unclear. The skin patterns
associated with COVID-19 are defined as follows:

1. Maculopapular rashes/Morbill form rash, 2-
Urticaria, 3. Vesicular lesions, 4. Chill Blaine-like

(A)

Fig. 4. A) Chilblain-like lesions in a SARS-CoV-2 positive 12-year-old girl and (B) an 8-year-old boy with a SARS-CoV-2 positive
father. SARS-CoV-2, severe acute respiratory syndrome coronavirus-2, [154].

2- Urticaria: Urticaria has been identified as a potential
complication of COVID-19 in several studies. These
lesions usually present as urticaria or angioedema,
characterized by a slightly elevated, erythematous rash
with severe itching. There are generally two types of
urticaria; acute and chronic [156-157]. Acute urticaria is
a self-limiting lesion lasting less than six weeks, while
chronic urticaria persists for over six weeks. The
frequency of acute urticaria in COVID-19 patients has
been reported to range from 7 to 40%, and it appears more
common in middle-aged patients. The rash is typically
observed on the trunk and sometimes on the limbs.

J Med Microbiol Infect Dis 10

(B,

lesions (Covid finger), 5- Livedoid vasculopathy,
6- Livedoid lesion

These manifestations can be divided into various
inflammatory  types:  vesicular, urticarial,
maculopapular, vascular lesions, chill-blade,
petechiae purpura, and levidoid vasculopathy.

1- Maculopapular/morbilliform lesions:
Maculopapular lesions are the most commonly
observed skin manifestations associated with
COVID-19. They may arise as an adverse effect of
therapeutic drugs in adults or as a disease
complication in children. According to several
studies, the prevalence of maculopapular lesions
associated with COVID-19 ranges from 5% to
70%. Reports suggest that these rashes are more
commonly observed in middle-aged and older
individuals and are more frequently observed on
the trunk [150-152].

Although some studies have indicated that
maculopapular lesions appear spontaneously and
coincide with systemic symptoms, other studies
have suggested that there may be a 27 to 28 days
delay between the onset of systemic signs and the
appearance of skin manifestations. These lesions
are more common in patients with severe disease.
However, recent studies have shown that these
symptoms may not be attributed to the use of drugs
(Fig. 4) [150-155].

According to some studies, Urticaria can be observed
throughout the body or localized only on the face. Various
studies have shown that urticaria often coexists with
systemic symptoms. One study reported that patients with
urticaria experienced severe pruritus in 92% of cases and
attributed the lesions' extent to the disease's severity
[158]. Urticaria has been identified in various studies as a
potential side effect of several medications, including
chloroquine,  hydroxychloroquine,  ritonavir, and
corticosteroids. On the other hand, cytokine storms
caused by overactive immune systems are another
possible mechanism for developing urticaria [159].
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3- Chillblaine-like lesions (COVID finger): Pernio, also
known as chilblains, refers to localized skin inflammation
following exposure to cold or humid environments. This
condition can cause skin discoloration and swelling of the
extremities. In a study on 505 patients, 63% exhibited
chilblains-like complications, while other studies have
reported this number as ranging from 14.3 to 72% [160].
This condition is more frequently observed in adults and
young individuals and tends to affect the fingers and toes.

Chilblains typically appear after the onset of systemic
symptoms of COVID-19 and can last for 1 to 2 weeks.
They often present as itchy and painful lesions and tend to
occur in patients with moderate COVID-19. The exact
mechanism behind this complication is still unclear, but
according to Bouaziz et al. [158, 160], immune instability,
vasculitis, vascular thrombosis, and neoangiogenesis may
be involved in its development.

4- Vesicular lesions: Vesicular lesions are sacs filled
with clear fluid that form under the epidermis. These
lesions are commonly referred to as blisters and typically
have a diameter of less than 1 cm and tend to cluster
together [161]. The incidence of this lesion in patients
with COVID-19 is lower than other skin manifestations
(between 3.77 and 15%), and it often occurs in middle-
aged patients [151, 152].

The leading site of this complication is the trunk, while
in some studies, it has been seen on the extremities. The
onset time of this complication varies according to
different studies, but it typically occurs after systemic
symptoms have developed. One study observed that the
vesicular lesions presented along with systemic symptoms
[151]. In another study, the potential effect of the COVID-
19 virus on cutaneous endothelial vessels was suggested,
which could lead to the formation of vesicular lesions
[159]. The vesicular lesion has no relation with antiviral
drugs and any other COVID-19 therapies. This
manifestation may be a helpful factor in diagnosing
COVID-19 [161].

5- Petechiae/Purpura: Petechiae are small patches of
skin, less than 2 mm in diameter, and if the lesion is more
than 2 mm in diameter, it is called purpura [162-163].
Petechiae and purpura are the least prevalent skin
manifestations associated with COVID-19. According to
previous studies, petechiae have been observed in only
3% of patients. This complication was observed after
systemic symptoms, mostly in middle-aged patients with
severe disease. The proposed pathogenesis for this
complication is inflammatory thrombogenic vasculopathy
of the skin [164].

6- Livedoid lesions: Livedoid vasculopathy is a
permanent or temporary skin manifestation typically
characterized by a reddish-blue or purple grid color
change [165]. These conditions are usually followed by
vascular damage to the skin, decreased skin blood flow,
and reduced oxygenated skin hemoglobin levels.

J Med Microbiol Infect Dis 11
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Livedoid is one of the least common skin manifestations
seen in COVID-19 patients.

Out of 375 participants in a study, only 6% showed
different types and patterns of livedoid manifestations.
This lesion is typically observed on the trunk, elbow
flexor surface, distal hand part, and distal leg. These
manifestations often coincide with others and are more
common in elderly patients with severe infections. On
average, this condition lasts for nine days. Among all skin
manifestations observed in COVID-19 patients, those
with livedoid lesions had the highest mortality rate [151].

One theory regarding the pathology of the cutaneous
manifestations seen in some patients with COVID-19 is
an increase in blood coagulation. A retrospective study of
83 patients who died from COVID-19 showed elevated
levels of the D-dimer metabolite and fibrin and longer
prothrombin  times.  Disseminated intravascular
coagulation (DIC) induced severe COVID-19, possibly
associated with mild and concomitant reticulosis. Also,
the production of microthrombosis by inflammatory
cytokines or virus entry into the cell through ACE2
receptors could be related to the reticularis [166, 167].

Effects on the endocrine glands (Pituitary-adrenal
axis)

The hypothalamic-pituitary-adrenal (HPA) axis plays
a crucial role in coping with stress. Studies have
speculated that the SARS virus could affect this hormonal
axis through various mechanisms, demonstrating the virus
in some deceased patients' adrenal and pituitary glands
[168]. A study in 2004 showed that the SARS virus
expresses an amino acid sequence that mimics ACTH to
block the immune response. Interfering with ACTH
function can increase inflammatory cytokines [169].
Examination of 61 patients with invasive SARS found
that 3.39% had hypocortisolism, while 83.3% had central
adrenal dysfunction [168]. This indicated that adrenal
dysfunction was a late outcome in SARS that appeared
secondary to pituitary or hypothalamic injury [163].

Effects on the hypothalamic-pituitary-thyroid axis

Limited information is available on the effect of the
SARS virus strain on thyroid function. However, some
SARS patients have exhibited central hypothyroidism due
to hypothalamic-pituitary dysfunction. Thyroid damage in
SARS patients has been associated with decreased thyroid
hormone and calcitonin levels and direct damage to
thyroid tissue [168, 170]. According to some scientists,
there was a decrease in TSH levels in some patients
following SARS. In the pituitary gland of these patients,
a general reduction of cells and a decrease in TSH-
producing cells were reported [171]. While there is
currently little evidence that COVID-19 directly affects
the thyroid gland, patients with COVID-19 should still be
screened for possible changes in thyroid function because
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the virus can damage organs by inducing autoimmunity
[172].

Effects on the hypothalamic-pituitary-gonadal axis

Effects on Female Gonads. There is limited research
on the effect of the COVID-19 virus on the female
reproductive system. However, a recent study explored
the possible mechanisms of its impact. According to this
study, the expression of the ACE2 gene was increased in
oocytes, ovaries, uterus, and vagina (Fig. 5) [173-175].
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Fig. 5. (A) Comparison of ACE2 and cell-specific gene expression in normal adult human testes (n = 3) using microarray profiling
assay. It shows the average (with standard error of the mean) intensity values of target genes, including ACE2 (angiotensin |
converting enzyme 2), Zbtb16 (zinc finger and BTB domain containing 16; Plzf), Calb2 (calbindin 2; Calretinin), Sox9 (SRY -box
transcription factor 9), Cd34, and house-keeping Polr2a (RNA polymerase Il subunit A). (B) Hypothetical model of SARS-CoV-2
testicular infection based on data from other coronaviruses. ACE2 expressing LC in the interstitium is one of the targets of cell-free
SARS-CoV-2 infection that leads to LC dysfunction, including impaired steroidogenesis, inflammatory response, and/or apoptosis.
In addition to the interstitial Leydig cells, SARS-CoV-2 can also infect ACE2-expressing cells of the seminiferous tubules, including
Sertoli cells (SC) and spermatogonia cells (Spg). This infection may cause the production of inflammatory cytokines, transient
disruption of the blood-testis barrier, and depletion of germ cells, ultimately leading to impaired spermatogenesis. A SARS-CoV-2
infection-associated inflammatory response in the testes may result in increased recruitment of the peripheral immune cells, including
peripheral macrophages (PM) and virus-specific T cells (not shown here), that may facilitate virus clearance. While the virus may not
directly infect testicular macrophages (TM), it can suppress the inflammatory response and limit testicular damage [173].

Effects on Male Gonads. ACE2 mRNA in the testes is
primarily expressed in Sertoli cells, Leydig, and during
spermatogenesis [24]. The expression of this gene in these
organs is probably maximal [176]. On the other hand,
TMPRSS2, one of the critical factors enabling virus entry,
is also present in the testis [177]. The SARS virus can
cause orchitis and extensive destruction of testicular cells.
Due to the 76% similarity between the SARS virus and
COVID-19's amino acid sequences, COVID-19 may
affect affects sperm production and testosterone secretion
as well [178].

COVID-19 infection can destroy the blood-testis
barrier due to illness and inflammation, increasing the risk
of virus entry. Several reports have confirmed severe pain
and discomfort in the testicles in patients with COVID-
19, with one piece of information explicitly confirming
epididymitis [177, 179, 180]. A 2020 study measured LH,
FSH, and testosterone levels. The pattern of elevated LH
and no significant change in testosterone disproves the

J Med Microbiol Infect Dis 12

hypothesis of COVID-19’s effect on the hypothalamus,
pituitary, and Leydig cells. In addition, FSH levels
remained stable during the experiment compared to the
healthy group. This test defect could result from direct
testicular damage or an indirect inflammatory/immune
response in the testis [181, 182].

Most studies analyzing the semen of patients with
COVID-19 did not observe any trace of the virus's
presence, either during the disease or after recovery [183].
In a study, in the semen samples of a few patients, the
COVID-19 virus was seen. Patients with moderate to
severe infections had significant abnormalities in sperm
quality, such as sperm concentration, total sperm count
per ejaculation, and sperm motility, compared with mildly
infected patients and the healthy group. In summary, this
virus in a few patients is observed, and it changes the
quality of sperm [184].
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Effects on pancreas

Pancreatic ACE2 expression is prominent in the ductal
epithelium and the microvasculature but is rare in
endocrine cells [158]. Autopsies of COVID-19 patients
revealed multiple thrombotic lesions expressing SARS-
COV-2 nucleocapsid protein confined to the ducts of the
pancreas. Virus particles in the kidneys have been
observed in the autopsies of non-transplant patients 24-48
h

after death.

Furthermore, they evaluated the expression patterns of
other genes related to SARS-COV-2, such as TMPRSS4,
TMPRSS11D, CTSL, and ADAM17. The results showed
that CTSL and ADAM17 were more abundant in a- and -
cells while TMPRSS4 had low levels in endocrine cells,
and the expression level of TMPRSS11D was also low in
most cell types of the pancreas [181]. A study reported the
first case of COVID-19 infection in pancreatic transplant
recipients, and to date, there have been no other reports of
COVID-19 in pancreatic transplant recipients (PT) [183].

As discussed in this paper, the SARS-COV-2 virus can
enter various organs, leading to cell death and tissue
damage. The upper respiratory tract is the primary target
of COVID-19. The virus can cause acute pulmonary
inflammation, pulmonary edema, ARDS, and endothelial
dysfunction in the lung as the primary target organs.
Reports indicate that this virus can also enter other tissues

Table 2. Pathological effects of COVID-19 on body organs

Pathological effects of COVID-19

and organs and cause complications. Mechanisms related
to angiotensin Il receptors and cytokine pathways can
cause acute pulmonary inflammation, pulmonary edema,
acute respiratory distress syndrome, vascular endothelial
dysfunction, pulmonary embolism in the lungs, and heart
failure. In addition, the COVID-19 virus can cause other
inflammatory complications in other organs, such as the
heart, gastrointestinal tract, CNS, liver, kidney, glands,
pancreas, and skin. However, infection complications in
the glands and pancreas have not yet been confirmed.
Also, viral infection-induced liver damage is typically
mild and reversible. In addition, skin manifestations may
be due to drug use during infection or disease
complications. Reports indicate that COVID-19 infection
can cause gastrointestinal symptoms such as diarrhea,
vomiting, and abdominal pain. Several reports have
shown mild and transient liver damage, polyneuropathy,
encephalitis, stroke, acute renal failure, hypocortisolism,
and hypothalamus and pituitary system damage as
potential complications of COVID-19. In addition,
COVID-19 can cause cutaneous manifestations such as
rash, urticaria, maculopapular lesions, chilblains,
petechial purpura, and scalopathy. Studying these effects
is necessary to consider these different symptoms in
diagnosing and treating COVID-19. The pathological
effects of COVID-19 on body organs examined in this
paper are summarised in Table 2.

Pathological effects
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Liver effects
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