Volume 10, Issue 1 (3-2022)                   JoMMID 2022, 10(1): 42-47 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Najafi Asl M, Mahmoodi P, Bahari A, Goudarztalejerdi A. Isolation, Molecular Identification, and Antibiotic Resistance Profile of Salmonella Typhimurium Isolated from Calves Fecal Samples of Dairy Farms in Hamedan. JoMMID 2022; 10 (1) :42-47
URL: http://jommid.pasteur.ac.ir/article-1-441-en.html
Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
Abstract:   (1168 Views)
Introduction: Calf diarrhea is one of the significant problems in dairy farms associated with treatment costs and reduced livestock production. Salmonellae are among the most common and the major causative agents of diarrhea in calves and humans. The present study was carried out to isolate and identify Salmonella in fecal samples of calves in industrial dairy farms of Hamedan and to determine antibiotic resistance profiles of the probable isolates. Methods: Salmonella were presumptively isolated based on the cultural characteristics and biochemical tests, and the identity of the isolates was further confirmed using genus- and serotype-specific PCR assays. Kirby-Bauer disk diffusion method was performed to determine antibiotic resistance profiles of the isolates. Results: Out of 120 stool samples collected from 8 industrial farms, 22 (18.33%) isolates possessing rfbJ, fliC and fljB genes were identified as Salmonella Typhimurium serotype. Antibiotic susceptibility test revealed all isolates (100%) were susceptible to gentamicin, amoxicillin-clavulanic acid, kanamycin, and ciprofloxacin and resistant against cotrimoxazole, cefazolin, and cefixime. Conclusion: To our knowledge, this study was the first report of Salmonella infection in Hamedan's dairy farms, indicating a relatively high prevalence rate of S. Typhimurium infection as the only detected serotype. Antibiotic resistance should also be considered a severe public health concern. Thus, effective hygiene measures should be adopted to prevent or reduce the infection, and monitoring antibiotic susceptibility is required to choose the drug of choice for treatment.
Full-Text [PDF 2715 kb]   (548 Downloads)    
Type of Study: Original article | Subject: Epidemiologic studies including microbial genotyping, phenotyping and serotyping
Received: 2022/01/10 | Accepted: 2022/03/11 | Published: 2022/04/4

References
1. Buxton A, Fraser G. Immunology, bacteriology, mycology, diseases of fish and laboratory methods, Blackwell Scientific Publications; 1977; 93-102.
2. Hoelzer K, Switt AIM, Wiedmann M. Animal contact as a source of human non-typhoidal salmonellosis. Vet Res. 2011; 42 (1): 1-28. [DOI:10.1186/1297-9716-42-34]
3. Bs M. A Review Of Studies On Isolation, Diagnosis And Antimicrobial Resistance of Salmonella In Iran. Vet Res Biol Prod. 2016; 28 (4): 21-30.
4. McQuiston JR, Waters RJ, Dinsmore BA, Mikoleit ML, Fields PI. Molecular determination of H antigens of Salmonella by use of a microsphere-based liquid array. J Clin Microbiol. 2011; 49 (2): 565-573. [DOI:10.1128/JCM.01323-10]
5. Rahn K, De Grandis SA, Clarke RC, McEwen SA, Galan JE, Ginocchio C, et al. Amplification of an invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes. 1992; 6 (4): 271-279. [DOI:10.1016/0890-8508(92)90002-F]
6. Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernard S, Casadesús J, Platt DJ, Olsen JE. Host adapted serotypes of Salmonella enterica. Epidemiol Infect. 2000; 125 (2): 229-255.‏ [DOI:10.1017/S0950268899004379]
7. Sun H, Wan Y, Du P, Bai L. The epidemiology of monophasic Salmonella Typhimurium. Foodborne Pathog Dis. 2020; 17 (2): 87-97.‏ [DOI:10.1089/fpd.2019.2676]
8. Chengappa M, Staats J, Oberst R, Gabbert N, McVey S. Prevalence of Salmonella in raw meat used in diets of racing greyhounds. J Vet Diagn Investig. 1993; 5 (3): 372-377. [DOI:10.1177/104063879300500312]
9. Hendriksen SW, Orsel K, Wagenaar JA, Miko A, van Duijkeren E. Animal-to-human transmission of Salmonella Typhimurium DT104A variant. Emerg Infect Dis. 2004; 10 (12): 2225. [DOI:10.3201/eid1012.040286]
10. Levantesi C, Bonadonna L, Briancesco R, Grohmann E, Toze S, Tandoi V. Salmonella in surface and drinking water: occurrence and water-mediated transmission. Food Res Int. 2012; 45 (2): 587-602. [DOI:10.1016/j.foodres.2011.06.037]
11. Nielsen LR. Review of pathogenesis and diagnostic methods of immediate relevance for epidemiology and control of Salmonella Dublin in cattle. Vet Microbiol. 2013; 162 (1): 1-9. [DOI:10.1016/j.vetmic.2012.08.003]
12. Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL, Kasuga F, Rokni MB, Zhou XN, Fèvre EM, Sripa B, Gargouri N. World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. PLoS medicine. 2015; 3 (12): e1001920. [DOI:10.1371/journal.pmed.1001920]
13. Chlebicz A, Śliżewska K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: a review. Int J Environ Res Public Health. 2018; 15 (5): 863. [DOI:10.3390/ijerph15050863]
14. Quinn, PJ, Carter, ME, Markey, PK. and Carter, GR. Clinical veterinary microbiology. Mosby; 1994. p. 209-221.
15. Cobbold RN, Rice DH, Davis MA, Baser TE, Hancock DD. Long term persistence of multi-drug-resistant Salmonella enterica serovar Newport in two dairy herds. J Am Vet Med Assoc. 2006; 228: 585-591. [DOI:10.2460/javma.228.4.585]
16. Lim Y-H, Hirose K, Izumiya H, Arakawa E, Takahashi H, Terajima J, et al. Multiplex polymerase chain reaction assay for selective detection of Salmonella enterica serovar Typhimurium. Jpn J Infect Dis. 2003; 56 (4): 151-155.
17. CLSI (Clinical and laboratory standards institute). Performance standards for antimicrobial susceptibility test, 22th informational supplement. 2013; CLSI, Wayne, Pa. M100-S23, 26, No. 3.
18. Jajere SM. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet World. 2019; 12 (4): 504. [DOI:10.14202/vetworld.2019.504-521]
19. Tegegne FM. Epidemiology of Salmonella and its serotypes in human, food animals, foods of animal origin, animal feed and environment. J Food Nutr Heal. 2019; 2 (1): 7-14.
20. Besser TE, Goldoft M, Pritchett LC, Khakhria R, Hancock DD, Rice DH, et al. Multiresistant Salmonella Typhimurium DT104 infections of humans and domestic animals in the Pacific Northwest of the United States. Epidemiol Infect. 2000; 124 (2): 193-200. [DOI:10.1017/S0950268899003283]
21. Davis MA, Hancock DD, Besser TE, Rice DH, Gay JM, Gay C, et al. Changes in antimicrobial resistance among Salmonella enterica serovar Typhimurium isolates from humans and cattle in the Northwestern United States, 1982-1997. Emerg Infect Dis. 1999; 5 (6): 802. [DOI:10.3201/eid0506.990610]
22. Greene SK, Stuart AM, Medalla FM, Whichard JM, Hoekstra RM, Chiller TM. Distribution of multidrug-resistant human isolates of MDR-ACSSuT Salmonella Typhimurium and MDR-AmpC Salmonella Newport in the United States, 2003-2005. Foodborne Pathog Dis. 2008; 5 (5): 669-680. [DOI:10.1089/fpd.2008.0111]
23. Wang X, Biswas S, Paudyal N, Pan H, Li X, Fang W, et al. Antibiotic resistance in Salmonella Typhimurium isolates recovered from the food chain through National Antimicrobial Resistance Monitoring System between 1996 and 2016. Front Microbiol. 2019; 10: 985. [DOI:10.3389/fmicb.2019.00985]
24. Weill F-X, Guesnier F, Guibert V, Timinouni M, Demartin M, Polomack L, et al. Multidrug resistance in Salmonella enterica serotype Typhimurium from humans in France (1993 to 2003). J Clin Microbiol. 2006; 44 (3): 700-708. [DOI:10.1128/JCM.44.3.700-708.2006]
25. Davidson KE, Byrne BA, Pires AFA, Magdesian KG, Pereira R V. Antimicrobial resistance trends in fecal Salmonella isolates from northern California dairy cattle admitted to a veterinary teaching hospital, 2002-2016. PLoS One. 2018; 13 (6): e0199928. [DOI:10.1371/journal.pone.0199928]
26. FR KH. Transferable antibiotic resistance in Salmonella isolated from diarrhea of calves around Shiraz. J Vet Res. 1997; 52 (3).
27. Jadidi A, Hosseni SD, Homayounimehr A, Hamidi A, Ghani S, Rafiee B. Simple and rapid detection of Salmonella spp from cattle feces using polymerase chain reaction (PCR) in Iran. Afr J Microbiol Res. 2012; 6 (24): 5210-5214.
28. Halimi HA, Seifi HA, Rad M. Bovine salmonellosis in Northeast of Iran: Frequency, genetic fingerprinting and antimicrobial resistance patterns of Salmonella spp. Asian Pac J Trop Biomed. 2014; 4 (1): 1-7. [DOI:10.1016/S2221-1691(14)60199-4]
29. Asgharpour P, Nadalian MG, Ghashghaie A, Shahbazi Y. Prevalence of calf salmonellosis in farms in Kermanshah province. J Large Anim Clin Sci Res (J Vet Med). 2014; 7: 21-28.
30. Moradi T, Azadbakht R, Nejat Dehkordi S, Jafariyan Dehkordi M, Momtaz H, Heidari Sureshjani M. Evaluation of Prevalence of the Most Important Bacterial and Protozoal Causes of Calf Diarrhea in Shahrekord Suburb Dairy Husbandries. J Vet Res. 2020; 75 (1): 83-89.
31. Bischoff K, Edrington T, Callaway T, Genovese K, Nisbet D. Characterization of antimicrobial resistant Salmonella Kinshasa from dairy calves in Texas. Lett Appl Microbiol. 2004; 38 (2): 140-145. [DOI:10.1111/j.1472-765X.2003.01476.x]
32. Valenzuela JR, Sethi AK, Aulik NA, Poulsen KP. Antimicrobial resistance patterns of bovine Salmonella enterica isolates submitted to the Wisconsin Veterinary Diagnostic Laboratory: 2006-2015. J Dairy Sci. 2017; 100 (2): 1319-1330. [DOI:10.3168/jds.2016-11419]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.