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ABSTRACT

Introduction: Proteus spp. are opportunistic members of Enterobacteriaceae,
accounting for 10% of urinary tract infections and other primary clinical
infections. They produce extended-spectrum beta-lactamases (ESBL) that can
confer resistance to beta-lactam antibiotics. This study aimed to investigate the
prevalence, antimicrobial susceptibility, molecular characteristics, and genetic
relationship of ESBL-producing Proteus spp. clinical isolates in Babol,
Received: 10 Dec. 2021 Northern Iran. Methods: In this cross-sgctior)ql stU(_jy, out_c_>f 112 cIin!caI
Received in revised form: 21 Jun. samples, 30 Proteus spp. |§o_lates were identified via specific _blochemlcal
2022 assays. According to the Clinical and Laboratory Standards Institute (CLSI)
Accepted: 12 Jul. 2022 guidelines, antibiotic susceptibility was evaluated using disc diffusion and agar
DOI: 10.52547/JoMMID.10.3.114 dilution methods, and polymerase chain reaction (PCR) was used to detect
blatem and blasyy genes. Results: The resistance rate to tetracycline and
sulfamethoxazole was highest by disk diffusion and agar dilution. Multiple
drug-resistant (MDR) isolates were 86% and 60% in disk diffusion and agar
elaheh.ferdosi@yahoo.com dilution assays. Seven (23.3%) isolates had the blatem genes and 18 (60%)
Tel: +989113210431 blasyy. Conclusion: ESBL-producing Proteus spp. was highly prevalent,
Fax: and the blasyv was the most common resistance contributing gene. These
© The Author(s) findings and relatively high resistance to ampicillin demand more care in

|@ ®®@| prescribing antibiotics. Also, the high prevalence of MDR isolates in patients

infected with ESBL-producing Proteus spp. requires continuous surveillance.
INTRODUCTION

Proteus spp. are opportunistic members of blasuv [5, 6]. These narrow-spectrum [-lactamases are
Enterobacteriaceae responsible for 10% of urinary tract ~ located on plasmid cassettes and contribute to resistance
infections, cystitis, polio-nephritis, prostatitis, ulcer, eye, to p-lactam antibiotics. The rapid increase in
and intra-abdominal infections. Proteus vulgaris, Proteus ~ Ccephalosporin-resistant Enterobacteriaceae
mirabilis, and Proteus penneri are common pathogens containing blarem and blasyy genes poses a major
affecting immunosuppressed individuals. Also, Proteus therapeutic challenge [6-8].
members cause ~15% of nephrolithiasis through Misusing antibiotics has led to the spread of multi-drug
alkalinization. These bacteria were documented as resistant (MDR) strains, making it a significant challenge
extended-spectrum beta-lactamase (ESBL)-producers in for the medical community. The ESBL resistance
1987 [1]. Extended-spectrum pB-lactamase (ESBL) increases over time. In community-onset, there isa0.91%
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producing Enterobacteriaceae is a public health concern
worldwide [2, 3]. They produce enzymes responsible for
the hydrolysis of oxyimino-beta-lactam antibiotics [4].
The spread of B-lactam antibiotic-resistant isolates occurs
by a wide range of ESBL genes, e.g., blarem and

http://jommid.pasteur.ac.ir

yearly increase in ESBL, while in healthcare onsets, it
reaches up to 2.31%. In some countries, the phenotypic
ESBL production is estimated at 65% in
Enterobacteriaceae isolates, and in Europe, ESBL
antibiotics were the first-line therapy for the associated
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infectious diseases. Therefore, the first reports of
resistance to ESBL antibiotics came from Europe, and it
did not take long for similar reports to be received from
around the world [9-13]. The gradual evolution of
antibiotic-resistant strains has led to the expression of
resistance genes in antibiotic-sensitive bacterial strains
through gene mutation and horizontal gene transfer,
increasing the MDRs prevalence worldwide [14, 15]. The
class | integron is a common factor in distributing and
spreading antimicrobial resistance. This class carries
more than 40 resistance genes related to aminoglycosides,
beta-lactams, chloramphenicol, macrolides,
sulfonamides, and disinfectants [16].

This study investigated the blatem and blasyy resistance
genes in Proteus spp. and their correlations with antibiotic
resistance patterns in hospitalized patients.

MATERIAL AND METHODS

The setting, bacterial isolates, and study design.
From March 2018 to April 2019, we collected 112 blood
samples from the inpatients at Ayatollah Rohani Hospital,
Babol, Northern Iran. Proteus spp. were identified based
on conventional biochemical and microbiological tests,
i.e., biotyping assays. All isolates were stored in Luria
Bertani broth (Merck, Germany) containing 20% glycerol
at -80 °C for further use.

The Ethical Committee of Babol University of Medical
Sciences  approved  this study (Code No.:
MUBABOL.REC.1394.162].

Disk diffusion (DD) assay. Susceptibility testing was
performed with ten antibiotics by standard disk diffusion
(DD) technique according to CLSI (Clinical and
Laboratory Standards Institute) standard procedure [17].
The antibiotics included gentamicin (10 ug), cefepime (30
ug), amikacin (30 ug), ciprofloxacin (5 ug), imipenem (10
ug), cefotaxime (30 ug), ampicillin  (10ug),

piperacillin/tazobactam (30 ug), sulfamethoxazole (100
ug), and tetracycline (10 ug) (MAST Diagnostics,
Merseyside, UK). Escherichia coli ATCC 25922 was
used as positive quality control.

Agar dilution (AD) method. After preparing stock
solution from antibiotics according to CLSI 2018 standard
[17], 1.5x108 CFU/mI of microbial suspensions were
cultured on Mueller-Hinton Agar containing the desired
antibiotics (MAST Diagnostics, Merseyside, UK) and
incubated at 37 °C for 18 to 24 h. A plate containing a
medium with no antibiotics was included in assays as the
negative control, and results were evaluated according to
the CLSI12018 standard table.

Detection of blasnv and blatem genes. According to
the manufacturer's instructions, DNA extraction from all
isolates was performed using a high pure PCR template
preparation kit (Roche, Germany). The extracted DNAs
were stored at -20 °C for subsequent steps. The ESBL-
encoding loci, blatem, and blasny were amplified by
conventional PCR using the primers and conditions
described by others (Table 1). The 60 pl PCR reactions
contained 10 pl of extracted template DNA, 5 pl of 10x
buffer, 1.5mM MgCly, 0.2mM dNTPs, 50 pMole of each
primer (Copenhagen, Denmark), 1.5U of Tag DNA
polymerase (Amplicon Co., Denmark) and ddH-O to the
final volume. Amplification was performed in a
thermocycler (Corrbet, Australia) (Table 1), and PCR
products were electrophoresed in 1.5% agarose gel. The
PCR products were sequenced in both directions using the
same primers used in amplification in an automated DNA
sequencer device (Forster, USA). The standard strain
integron-positive Proteus spp. (ATCC1209) was used as
a positive control and integron-negative Proteus spp.
(ATCC1053) as a negative control. The generated
sequences were analyzed at the National Center for
Biotechnology Information (NCBI), available at the
(http://www.ncbi.nlm.nih.gov/BLAST/) website.

Table 1. Primers and PCR programs for amplifying blatem and blasnv genes

. . No.
Target  Primer  Primer sequence ot

TEM-F g:—ATGAGTATTCAACATTTCCG—

blatem 851 30
TEM-R gI—TTAATCAG TGAGGCACCTAT-

SHV-F gI—ATGCGTTATATTCGCCTGTG—

blasmv 735 35

SHV-R gI—TGCTTTGTTATTCGGGCCAA—

size (bp) ~ Cycles

PCR Condition

Denaturation Annealing  Extension Elnal . Reference
xtension
94°C for 30 S 55 °C for 72°Cforl 72°Cford [32]

30S min min

94 °C for 1 60°Cforl 72°Cforl 72 °C for

min min min 10 min 33]

RESULTS

Bacterial Isolation. From March 2018 to April 2019,
30 clinical Proteus spp. isolates were collected from 30
patients admitted to Ayatollah Rohani Hospital (Babol,
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Northern Iran). Other isolates were excluded from the
study.

Antibiotic Resistance Profile. MDR was evaluated by
DD assay and AD method. All strains were screened for
resistance to 10 antimicrobials by DD. The resistance
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rates to tetracycline, sulfamethoxazole, ampicillin,
cefotaxime, imipenem, gentamicin, cefepime and
ciprofloxacin were 90%, 83.3%, 51.7%, 48.2%,17.2%,
13.7%, 10.3% and %3.4, respectively. In contrast, there
was no resistance to amikacin and
piperacillin/tazobactam. In the DD method, 86.6% of
isolates were MDR phenotype. In the agar dilution

ESBL in Proteus spp.

method, the resistance rate to sulfamethoxazole,
ampicillin, tetracycline, cefotaxime, and cefepime were
80%, 50%, 13.7%, 13.7%, and 10.3%, respectively. No
resistance to ciprofloxacin, gentamicin, amikacin,
imipenem, and piperacillin/tazobactam was detected
(Table 2). Also, in the AD method, 60% of isolates were
MDR phenotype (Tables 3 and 4).

Table 2. Frequency of Antibiotic susceptibility pattern of Proteus spp. evaluated by disk diffusion (DD) and Agar dilution (AD)

methods
Antibiotics Method Resistant Intermediate susceptible Total number P-value
Ciprofloxacin Disk diffusion n =1 (3.4%) n =2 (6.8%) n =27(90%) n=30 NS*
Agar dilution n =0 (0.0%) n =1 (3.4%) n =29 (96.6%) n=30
Amikacin Disk diffusion n =0 (0.0%) n =2 (6.8%) n =28 (93.3%) n=230 <0.001
Agar dilution n =0 (0.0%) n =0 (0.0%) n =30 (100%) n=230
Tetracycline Disk diffusion n =27 (90%) n =0 (0.0%) n =3 (10.3%) n=230 <0.001
Agar dilution n =4 (13.7%) n =23 (76.6%) n =3 (10.3%) n=30
Gentamicin Disk diffusion n =4 (13.7%) n =0 (0.0%) n = 26 (86.6%) n=30 NS
Agar dilution n =0 (0.0%) n =3 (10.3%) n =27 (90%) n=230
Cefotaxime Disk diffusion n = 14 (48.2%) n =9 (31%) n =7 (23.3%) n=30 NS
Agar dilution n =4 (13.7%) n =10 (34.4%) n =16 (53.3%) n=30
Ampicillin Disk diffusion n =15 (51.7%) n =3 (10.3%) n =12 (40%) n=230 NS
Agar dilution n =15 (50%) n =0 (0.0%) n =15 (50%) n=230
Cefepime Disk diffusion n =3 (10.3%) n =21 (72.4%) n =6 (20%) n=230 <0.05
Agar dilution n =3 (10.3%) n =0 (0.0%) n =27 (90%) n=30
Imipenem Disk diffusion n =5(17.2%) n=1(3.4%) n =24 (80%) n=230 NS
Agar dilution n =0 (0.0%) n =5 (17.2%) n =25 (83.3%) n=230
Piperacillin tazobactam Disk diffusion n =0 (0.0%) n =0 (0.0%) n = 30 (100%) n=30 <0.001
Agar dilution n =0 (0.0%) n =0 (0.0%) n =30 (100%) n=230
sulfamethoxazole Disk diffusion n=24(8%) n =0 (0.0%) n =6 (20%) n=230 <0.001
Agar dilution n = 24 (80%) n =0 (0.0%) n =6 (20%) n=230
Table 3. Multi-drug resistant (MDR) pattern in isolated antibiotic-resistant Proteus spp.
el
g MDR Antibiotics Resistant sample count (%) Total number (%)
s
T+ SXT n =5 (16.6%)
Double-resistant T + CTX + SXT n=1(3.3%) n=7(23.3%)
T+CTX n=1(3.3%)
T+GM +STX n =4 (13.3%)
Triple-resistant T+ CTX + SXT n=1(3.3%)
S T +AP + CTX n =3 (10%) n =9 (30%) <
3 T+CTX +CPM n=1(3.3%) ©
£ g
S Quadruple- T+ CTX + AP+ SXT n =4 (13.3%) ©
] resistant T+ CTX + CPM +SXT n =2 (6.6%) n =6 (20%) N
o c
Quintuplet- T+ CTX+ AP+ CP+ SXT n =3 (10%) _ )
resistant n =3 (10%)
Sextuplet- T+ GM + CTX + AP + CP+ SXT n=1(3.3%)
resistant n=1(3.3%)
Double-resistant AP + SXT n =10 (33.3%)
CTX + CPM n =2 (6.6%) n =12 (40%)
c
% T+ AP + SXT n =3 (10%)
-— . . = 0, —~
5 Triple-resistant CTX + AP + SXT n=2(6.6%) n= 5 (16.6%) °§
2 Quadruple- T+ CTX + CPM + SXT n=1(3.3%) =
resistant n=1(3.3%) =

j o=y
T = Tetracycline; CTX = Cefotaxime; SXT = sulfamethoxazole; GM = Gentamycin; Ap = Ampicillin; CPM = Cefepime; CP =

Ciprofloxacin
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PCR amplification of Gene Cassettes. Of 30 Proteus
spp. isolates, 7 (23.3%) and 18 (60%) were positive for
blatem and blasny genes, respectively (Fig. 1).

BLAST and Nucleotide Sequence Accession
Number. The positive blarem and blasuy strains were

a)

sequenced and blasted against similar sequences in the
Genbank database. After alignment, the homologous
sequences were excluded, and the novel ones were
deposited in the GenBank database under the accession
numbers MH724198, MH724199, MH724200, and
MH724201.

§13 S14 M 823 C+ C- 822 S16 S17 M C-

753bp Y we -

Fig. 1. PCR amplification of blatem (a) and blasnv (b) genes. Lane M: DNA size marker (100bp); C-: negative control (ATCC 1053);
C+: positive control (ATCC 1209).

Table 4. Correlation between blaTEM and blaSHV genes and antibiotic resistance

Antibiotic Antibiotic resistance pattern
Antibiotics  evolution Presence/Absence of Genes P-value
method Resistant Sensitive Total samples
Agar TEM TEM+ 0 (0%) 7 (100%) n=7 NS*
Dilution TEM- 1 (4.3%) 22 (95.7%) n=23
§ SHV SHV+ 0 (0%) 18 (100%) n=18 NS
3 SHV- 1 (8.3%) 11 (91.7%) n=12
5 Disk TEM TEM+ 1 (14.3%) 6 (85.7%) n=7 NS
= Diffusion TEM- 2 (8.7%) 21 (91.3%) n=23
© SHV SHV+ 1 (5.6%) 17 (94.4%) n=18 NS
SHV- 2 (16.7%) 10 (83.3%) n=12
CE— v . TEM TEM+ 0 (0%) 7 (100%) n=7 <0.001
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Agar TEM- 0 (0%) 23 (100%) n=23
Dilution SHV SHV+ 0 (0%) 18 (100%) n=18 <0.001
SHV- 0 (0%) 12 (100%) n=12
Disk TEM TEM+ 0 (0%) 7 (100%) n=7 NS
Diffusion TEM- 2 (8.7%) 21 (91.3%) n=23
SHV SHV+ 1 (5.6%) 17 (94.4%) n=18 NS
SHV- 1(8.3%) 11 (91.7%) n=12
Agar TEM TEM+ 6 (85.7%) 1 (14.3%) n=7 NS
Dilution TEM- 21 (91.3%) 2 (8.7%) n=23
o SHV SHV+ 15 (83.3%) 3 (16.7%) n=18 NS
= SHV- 12 (100%) 0 (0%) n=12
> Disk TEM TEM+ 6 (85.7%) 1 (14.3%) n=7 NS
£ Diffusion TEM- 21 (91.3%) 2 (8.7%) n=23
= SHV SHV+ 15 (83.3%) 3 (16.7%) n=18 NS
SHV- 12 (100%) 0 (0%) n=12
Agar TEM TEM+ 0 (0%) 7 (100%) n=7 NS
Dilution TEM- 3 (13%) 20 (87%) n=23
£ SHV SHV+ 1 (5.6%) 17 (94.4%) n=18 NS
2 SHV- 2 (16.7%) 10 (83.3%) n=12
S Disk TEM TEM+ 0 (0%) 7 (100%) n=7 NS
& Diffusion TEM- 4 (17.4%) 19 (82.6%) n=23
SHV SHV+ 2 (11.1%) 16 (88.9%) n=18 NS
SHV- 2 (16.7%) 10 (83.3%) n=12
Agar TEM TEM+ 5 (71.4%) 2 (28.6%) n=7 NS
Dilution TEM- 9 (39.1%) 14 (60.9%) n=23
° SHV SHV+ 10 (55.6%) 8 (44.4%) n=18 NS
£ SHV- 4 (33.3%) 8 (66.7%) n=12
é Disk TEM TEM+ 6 (85.7%) 1 (14.3%) n=7 NS
s Diffusion TEM- 17 (73.9%) 6 (26.1%) n=23
SHV SHV+ 15 (83.3%) 3 (16.7%) n=18 NS
SHV- 8 (66.7%) 4 (33.3%) n=12
Agar TEM TEM+ 4 (57.1%) 3 (42.9%) n=7 NS
Dilution TEM- 11 (47.8%) 12 (52.2%) n=23
c SHV SHV+ 9 (50%) 9 (50%) n=18 NS
= SHV- 6 (50%) 6 (50%) n=12
= Disk TEM TEM+ 5 (71.4%) 2 (28.6%) n=7 NS
g Diffusion TEM- 13 (56.5%) 10 (43.5%) n=23
SHV SHV+ 10 (55.6%) 8 (44.4%) n=18 NS
SHV- 8 (66.7%) 4 (33.3%) n=12
Agar TEM TEM+ 2 (28.6%) 5 (71.4%) n=7 NS
Dilution TEM- 1 (4.3%) 22 (95.7%) n=23
® SHV SHV+ 3 (16.7%) 15 (83.3%) n=18 NS
E SHV- 0 (0%) 12 (100%) n=12
g Disk TEM TEM+ 5 (71.4%) 2 (28.6%) n=7 NS
S Diffusion TEM- 19 (82.6%) 4 (17.4%) n=23
SHV SHV+ 14 (77.8%) 4 (22.2%) n=18 NS
SHV- 10 (83.3%) 2 (16.7%) n=12
Agar TEM TEM+ 1 (14.3%) 6 (85.7%) n=7 NS
Dilution TEM- 4 (17.4%) 19 (82.6%) n=23
e SHV SHV+ 4(22.2%) 14 (77.8%) n=18 NS
o SHV- 1(8.3%) 11 (91.7%) n=12
2 Disk TEM TEM+ 1 (14.3%) 6 (85.7%) n=7 NS
E Diffusion TEM- 5 (21.7%) 18 (78.3%) n=23
SHV SHV+ 5 (27.8%) 13 (72.2%) n=18 NS
SHV- 1 (8.3%) 11 (91.7%) n=12
c Agar TEM TEM+ 0 (0%) 7 (100%) n=7 <0.001
s Dilution TEM- 0 (0%) 23 (100%) n=23
£ SHV SHV+ 0 (0%) 18 (100%) n=18 <0.001
8 SHV- 0 (0%) 12 (100%) n=12
pus Disk TEM TEM+ 0 (0%) 7 (100%) n=7 <0.001
= Diffusion TEM- 0 (0%) 23 (100%) n=23
£ SHV SHV+ 0 (0%) 18 (100%) n=18 <0.001
£ SHV- 0 (0%) 12 (100%) n=12
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CEge Agar TEM TEM+ 5 (71.4%) 2 (28.6%) n=7 NS
SE XS Dilton TEM- 19 (82.6%) 4 (17.4%) n=23
SHV SHV+ 14 (77.8%) 4 (22.2%) n=18 NS
SHV- 10 (83.3%) 2 (16.7%) n=12
Disk TEM TEM+ 5 (71.4%) 2 (28.6%) n=7 NS
Diffusion TEM- 19 (82.6%) 4 (17.4%) n=23
SHV SHV+ 14 (77.8%) 4 (22.2%) n=18 NS
SHV- 10 (83.3%) 2 (16.7%) n=12
DISCUSSION

The prevalence of ESBL- producing Proteus spp. is
increasing worldwide, including in the United States,
Asia, and Europe [18]. In the present study, the prevalence
of blarem and blasww were 23.3% and 60%. These
differences in the distribution of blarem and blassy may be
due to geographical distribution, type of organisms, and
source of infections. In Irag, the prevalence of blaTEM
was 60% among P. mirabilis isolates [19], while in China,
it was around 52% in the same bacteria [20]. In Argentina,
investigating the resistance to p-lactam/p-lactamase
inhibitors in enterobacteria revealed that all Proteus spp.
isolates harbored the blatem gene [21]. In India, the blarem
rate among P. mirabilis isolates was 81.9% [22], while in
Egypt, it was 35% [23]. In Tehran, Iran, Malekjamshidi
et al. (2010) estimated blarem prevalence at 83% among
ESBL-positive P. mirabilis specimens [24]. Other studies
indicated variable rates ranging from 8.3% to 91% [25-
29].

In a study by Hamid et al., no P. mirabilis isolates in
Irag had blasuv [19]. In India, the blasuv prevalence among
P. mirabilis isolates was 7% [22]. In Tehran, Iran, the
prevalence of blasuv prevalence was 8% in ESBL-positive
P. mirabilis isolates [24]

The correlation between blatem and blasav gene and
resistance to some antibiotics showed a significant
correlation. The blatem and blaswv genes significantly
correlated with the resistance to piperacillin/tazobactam
obtained by the disk diffusion method. Also, there was a
significant correlation between blatem and blasiv genes
and resistance to piperacillin/tazobactam and amikacin in
the agar dilution method. According to the disk diffusion
and agar dilution assays, piperacillin/tazobactam,
amikacin, gentamicin, and imipenem are proper choices
for treating Proteus spp. Given that most ESBL-positive
strains showed increased resistance to tetracycline,
sulfamethoxazole, cefotaxime, and ampicillin, blarem and
blassv genes might help confer resistance to these
antibiotics. Conza et al. (2014) showed a significant
association between the blarem gene and resistance to
amoxicillin-clavulanic acid [21]. Also, Li et al. (2022)
showed a substantial correlation between blarem and
resistance to chloramphenicol, ciprofloxacin, and
trimethoprim-sulfamethoxazole in P. mirabilis isolates
[20].

In our study, the highest antibiotic resistance rates were
against sulfamethoxazole, tetracycline, and ampicillin.
The results of MDR strains in both disk diffusion and agar

J Med Microbiol Infect Dis 119

dilution methods were 86% and 60%, almost similar to
other studies in different countries [17, 26, 27, 30, 31].
Due to the high prevalence of MDR strains, which
indicates misuse of antibiotics, studying the physiological
properties of B-lactamase genes has received much
attention. Proteus spp., an opportunistic bacterium,
accounts for 10% of urinary tract infections. Therefore,
identifying resistance genes is essential for implementing
infection control programs and preventing the spread of
resistant strains [10-13].
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