Volume 9, Issue 3 (9-2021)                   JoMMID 2021, 9(3): 116-121 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Komijani M, Hamta A, Khanmohamadi Hezaveh S. The Relationship between Torque teno Virus and TLR2 rs5743708 Polymorphism with Breast Cancer. JoMMID. 2021; 9 (3) :116-121
URL: http://jommid.pasteur.ac.ir/article-1-373-en.html
Department of Biology, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran
Abstract:   (219 Views)
Introduction: Breast cancer is one of the most important causes of mortality in women. Various factors are involved in the development of cancer, including viruses. Toll-like receptors (TLRs) have an essential role in the innate immune system. The present study investigated the relationship between TLR2 rs5743708 polymorphisms and Torque teno virus (TTV) infection with breast cancer. Methods: Blood samples from 80 women with breast cancer and 80 healthy women were collected, and after DNA extraction, the presence of TTV was investigated by a PCR assay and polymorphism in the TLR2 gene (rs5743708) was explored using the PCR-RFLP method. Also, the physical and chemical properties of TLR2 protein in the two wild and mutant forms were analyzed using the ExPASy database. Results: Statistical analysis showed that there was no significant relationship between the age and TTV infection; TTV infection and breast cancer; the grade of cancer, and TTV infection; while there were significant relationships between rs5743708 polymorphisms and breast cancer; GG genotype and increased incidence of cancer; TTV infection and rs5743708 polymorphisms. Also, instability index, aliphatic index, grand average of hydropathicity, and molecular weight of TLR2 protein varied in wild and mutant states. Conclusions: Although there was no significant relationship between TTV infection and breast cancer, the rs5743708 polymorphisms might be involved in TTV infection and breast cancer.
Full-Text [PDF 1049 kb]   (76 Downloads)    
Type of Study: Original article | Subject: Epidemiologic studies including microbial genotyping, phenotyping and serotyping
Received: 2021/07/3 | Accepted: 2021/09/19 | Published: 2021/10/12

References
1. Sudhakar A. History of cancer, ancient and modern treatment methods. J Cancer Sci Ther. 2009; 1 (2): 1. [DOI:10.4172/1948-5956.100000e2]
2. James V Lacey Jr , Susan S Devesa, Brinton LA. Environ Mol Mutagen. Environmental molecular mutagenesis. 2002; 39 (2‐3): 82-8. [DOI:10.1002/em.10062]
3. Tahergorabi Z, Moodi M, Mesbahzadeh B. Breast Cancer: A preventable disease. J Birjand Univ Med Sci. 2014; 21 (2): 126-41.
4. McLaughlin-Drubin ME, Munger K. Viruses associated with human cancer. Biochim Biophys Acta Mol Basis Dis. 2008; 1782 (3): 127-50. [DOI:10.1016/j.bbadis.2007.12.005]
5. Okamoto H. History of discoveries and pathogenicity of TT viruses. Curr Top Microbiol Immunol. 2009; 331: 1-20. [DOI:10.1007/978-3-540-70972-5_1]
6. Zhong S, Yeo W, Tang M, Liu C, Lin Xr, Ho WM, et al. Frequent detection of the replicative form of TT virus DNA in peripheral blood mononuclear cells and bone marrow cells in cancer patients. J Med Virol. 2002; 66 (3): 428-34. [DOI:10.1002/jmv.2163]
7. Jarkasi NS, Sekawi Z, Kqueen CY, Othman Z. PJSRR. Pertanika Journal of Scholarly Research Reviews. 2018; 4 (1).
8. Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev. 2009; 227 (1): 75-86. [DOI:10.1111/j.1600-065X.2008.00737.x]
9. Hennessy EJ, Parker AE, O'neill LA. Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov. 2010; 9 (4): 293-307. [DOI:10.1038/nrd3203]
10. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci. 1998; 95 (2): 588-93. [DOI:10.1073/pnas.95.2.588]
11. Wujcicka W, Paradowska E, Studzińska M, Wilczyński J, Nowakowska D. Toll-like receptors genes polymorphisms and the occurrence of HCMV infection among pregnant women. Virol J. 2017; 14 (1): 64. [DOI:10.1186/s12985-017-0730-8]
12. Noreen M, Arshad M. Association of TLR1, TLR2, TLR4, TLR6, and TIRAP polymorphisms with disease susceptibility. Immunol Res. 2015; 62 (2): 234-52. [DOI:10.1007/s12026-015-8640-6]
13. Żukowski M, Taryma-Leśniak O, Kaczmarczyk M, Kotfis K, Szydłowski Ł, Ciechanowicz A, et al. Relationship between toll-like receptor 2 R753Q and T16934A polymorphisms and Staphylococcus aureus nasal carriage. Anaesthesiol Intensive Ther. 2017; 49 (2): 110-5. [DOI:10.5603/AIT.a2017.0027]
14. Manzin A, Mallus F, Macera L, Maggi F, Blois S. Global impact of Torque teno virus infection in wild and domesticated animals. J Infect Dev Ctries. 2015; 9 (06): 562-70. [DOI:10.3855/jidc.6912]
15. Spandole-Dinu S, Cimponeriu DG, Crăciun A-M, Radu I, Nica S, Toma M, et al. Prevalence of human anelloviruses in Romanian healthy subjects and patients with common pathologies. BMC Infect Dis. 2018; 18 (1): 334. [DOI:10.1186/s12879-018-3248-9]
16. Cimponeriu D, Ion DA, Spandole S, Apostol P, Toma M, Radu I, et al. Potential implication of genetic polymorphisms and Torque teno virus in sporadic breast cancer. Rom Biotechnol Lett. 2013; 18 (1): 7889.
17. de Villiers E-M, Schmidt R, Delius H, zur Hausen H. Heterogeneity of TT virus related sequences isolated from human tumour biopsy specimens. J Mol Med. 2002; 80 (1): 44-50. [DOI:10.1007/s001090100281]
18. Tokita H, Murai S, Kamitsukasa H, Yagura M, Harada H, Takahashi M, et al. High TT virus load as an independent factor associated with the occurrence of hepatocellular carcinoma among patients with hepatitis C virus‐related chronic liver disease. J Med Virol. 2002; 67 (4): 501-9. [DOI:10.1002/jmv.10129]
19. Zur Hausen H, de Villiers EM. Virus target cell conditioning model to explain some epidemiologic characteristics of childhood leukemias and lymphomas. Int J Cancer. 2005; 115 (1): 1-5. [DOI:10.1002/ijc.20905]
20. Spandole S, Cimponeriu D, Berca LM, Mihăescu G. Human anelloviruses: an update of molecular, epidemiological and clinical aspects. Arch Virol. 2015; 160 (4): 893-908. [DOI:10.1007/s00705-015-2363-9]
21. Figueiredo CP, Franz-Vasconcelos HC, Di Giunta G, Mazzuco TL, Caon T, Fernandes AL, et al. Detection of Torque teno virus in Epstein-Barr virus positive and negative lymph nodes of patients with Hodgkin lymphoma. Leuk Lymphoma. 2007;48 (4): 731-5. [DOI:10.1080/10428190701203954]
22. Bando M, Takahashi M, Ohno S, Hosono T, Hironaka M, Okamoto H, et al. Torque teno virus DNA titre elevated in idiopathic pulmonary fibrosis with primary lung cancer. Respirology. 2008; 13 (2): 263-9. [DOI:10.1111/j.1440-1843.2007.01217.x]
23. Zheng H, Ye L, Fang X, Li B, Wang Y, Xiang X, et al. Torque teno virus (SANBAN Isolate) ORF2 protein suppresses NF-κB pathways via interaction with IκB kinases. J Virol. 2007; 81 (21): 11917-24. [DOI:10.1128/JVI.01101-07]
24. Kincaid RP, Burke JM, Cox JC, de Villiers E-M, Sullivan CS. A human torque teno virus encodes a microRNA that inhibits interferon signaling. PLoS Pathog. 2013; 9 (12): e1003818. [DOI:10.1371/journal.ppat.1003818]
25. Noreen M, Arshad M. Association of TLR1, TLR2, TLR4, TLR6, and TIRAP polymorphisms with disease susceptibility. Immunol Res. 2015; 62 (2): 234-52. [DOI:10.1007/s12026-015-8640-6]
26. Kutikhin AG, Yuzhalin AE. Genomics of pattern recognition receptors: Applications in oncology and cardiovascular diseases: Springer Science & Business Media; 2013. [DOI:10.1007/978-3-0348-0688-6]
27. Kına I, Sultuybek GK, Soydas T, Yenmis G, Biceroglu H, Dirican A, et al. Variations in Toll-like receptor and nuclear factor-kappa B genes and the risk of glioma. Br J Neurosurg. 2018; 33: 165-70. [DOI:10.1080/02688697.2018.1540764]
28. Wang X-Q, Liu L, Liu Y, Zhang K. TLR-2 gene polymorphisms and susceptibility to cancer: evidence from meta-analysis. Genet Test Mol Biomark. 2013; 17 (12): 864-72. [DOI:10.1089/gtmb.2013.0246]
29. Ashton KA, Proietto A, Otton G, Symonds I, McEvoy M, Attia J, et al. Toll-like receptor (TLR) and nucleosome-binding oligomerization domain (NOD) gene polymorphisms and endometrial cancer risk. BMC cancer. 2010; 10 (1): 382. [DOI:10.1186/1471-2407-10-382]
30. Nischalke HD, Coenen M, Berger C, Aldenhoff K, Müller T, Berg T, et al. The toll‐like receptor 2 (TLR2)‐196 to‐174 del/ins polymorphism affects viral loads and susceptibility to hepatocellular carcinoma in chronic hepatitis C. Int J Cancer. 2012; 130 (6): 1470-5. [DOI:10.1002/ijc.26143]
31. Theodoropoulos GE, Saridakis V, Karantanos T, Michalopoulos NV, Zagouri F, Kontogianni P, et al. Toll-like receptors gene polymorphisms may confer increased susceptibility to breast cancer development. The Breast. 2012; 21 (4): 534-8. [DOI:10.1016/j.breast.2012.04.001]
32. Hosseini SV, Mojtahedi Z, Beizavi Z, Khazraei H, Zamani M. Relationship between Arg753Gln Toll-like receptor 2 and Asp299Gly Toll-like receptor 4 genetic variations and susceptibility to colorectal cancer in southern Iran. Arch Biol Sci. 2018; 70 (4): 775-9. [DOI:10.2298/ABS180812043H]
33. Semlali A, Alnemari R, Almalki E, Alrashed R, Alanazi M. Toll-Like Receptors Gene Polymorphism and Susceptibility to Cancer Development. Genetic Diversity and Disease Susceptibility: IntechOpen; 2018. [DOI:10.5772/intechopen.78029]
34. Teng S, Madej T, Panchenko A, Alexov E. Modeling effects of human single nucleotide polymorphisms on protein-protein interactions. Biophys J. 2009; 96 (6): 2178-88. [DOI:10.1016/j.bpj.2008.12.3904]
35. Takahashi K, Hoshino H, Ohta Y, Yoshida N, Mishiro S. Very high prevalence of TT virus (TTV) infection in general population of Japan revealed by a new set of PCR primers. Hepatol Res. 1998; 12 (3): 233-9. [DOI:10.1016/S1386-6346(98)00068-0]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.