Volume 9, Issue 3 (9-2021)                   JoMMID 2021, 9(3): 122-132 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kardani K, Bolhassani A, Kardani M, Agi E. Correlation of SARS-CoV-2 Infection with Hepatitis and Liver Disorders. JoMMID. 2021; 9 (3) :122-132
URL: http://jommid.pasteur.ac.ir/article-1-369-en.html
Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (225 Views)
The coronavirus infectious disease-2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a severe global health challenge. The primary target for this virus is the lung. However, SARS-CoV-2 can also attack other organs, including the kidney and liver.  Some COVID-19 case reports demonstrated elevated liver enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin. Indeed, higher levels of liver enzymes occur in severe cases compared with mild to moderate cases. The relationship between liver injury and COVID-19 might be due to various possible reasons such as reactivation of pre-existing liver disease, viral replication in hepatic cells causing direct cytotoxicity, liver ischemia and hypoxia, cytokine storm, and drug-induced liver injury (DILI). Thus, hepatitis prevention and care services are necessary during the COVID-19 pandemic. For instance, drugs that might reactivate hepatitis B should not be prescribed for treating COVID-19. Generally, the long-term effects of SARS-CoV-2 on human health and various organs are not well understood. This review briefly discusses the relationship between SARS-CoV-2 and liver injury (hepatitis), coinfection of hepatitis and COVID-19, and SARS-CoV-2 infection in autoimmune hepatitis.
Full-Text [PDF 1314 kb]   (87 Downloads)    
Type of Study: Review article | Subject: Infectious diseases and public health
Received: 2021/06/10 | Accepted: 2021/09/19 | Published: 2021/10/12

1. Kardani K, Bohassani A. Vaccine development against SARS-CoV-2: from virology to vaccine clinical trials. Coronaviruses. 2020; 2 (2): 159-71. [DOI:10.2174/2666796701999201026205553]
2. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020; 395 (10229): 1054-62. [DOI:10.1016/S0140-6736(20)30566-3]
3. Shenoy N, Luchtel R, Gulani P. Considerations for target oxygen saturation in COVID-19 patients: are we undershooting? BMC Med. 2020; 18: 260. [DOI:10.1186/s12916-020-01735-2]
4. Rismanbaf A, Zarei S. Liver and kidney injuries in COVID-19 and their effects on drug therapy: A letter to editor. Arch Acad Emerg Med. 2020; 8 (1): e17.
5. Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020; 5 (5): 428-30. [DOI:10.1016/S2468-1253(20)30057-1]
6. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497-506. [DOI:10.1016/S0140-6736(20)30183-5]
7. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323 (11): 1061-9. [DOI:10.1001/jama.2020.1585]
8. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395 (10223): 507-38. [DOI:10.1016/S0140-6736(20)30211-7]
9. Guan WJ, Ni ZY, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. J Emerg Med. 2020; 58 (4): 711-2. [DOI:10.1016/j.jemermed.2020.04.004]
10. Liu W, Tao ZW, Lei W, Yuan ML, Liu K, Zhou L, et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J. 2020; 133 (9): 1032-8. [DOI:10.1097/CM9.0000000000000775]
11. Mendlowitz AB, Naimark D, Wong WL, Capraru C, Feld JJ, Isaranuwatchai W, et al. The emergency department as a setting-specific opportunity for population-based hepatitis C screening: an economic evaluation. Liver Int. 2020; 40 (6): 1282-91. [DOI:10.1111/liv.14458]
12. Hutin YJF, Bulterys M, Hirnschall GO. How far are we from viral hepatitis elimination service coverage targets? J Int AIDS Soc. 2018; 21 (Suppl Suppl 2): e25050. [DOI:10.1002/jia2.25050]
13. Horton R. Offline: a dangerous virus, but not the one you think. Lancet. 2020; 395 (10227): 854. [DOI:10.1016/S0140-6736(20)30602-4]
14. Karimi-Sari H, Tajik M, Bayatpoor ME, Alavian SM. Increasing the awareness of the general population: an important step in elimination programs of viral hepatitis. Am J Gastroenterol. 2017; 112 (2): 393-5. [DOI:10.1038/ajg.2016.534]
15. Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, et al. Coronavirus disease 2019 (COVID-19): A perspective from China. Radiology. 2020; 200490. [DOI:10.1148/radiol.2020200490]
16. Hu LL, Wang WJ, Zhu QJ, Yang L. Novel coronavirus pneumonia related liver injury: etiological analysis and treatment strategy. Zhonghua Gan Zang Bing Za Zhi. 2020; 28 (2): 97-9.
17. Mao R, Liang J, Shen J, Ghosh S, Zhu LR, Yang H, et al. Implications of COVID-19 for patients with pre-existing digestive diseases. Lancet Gastroenterol Hepatol. 2020; 5 (5): 425-7. [DOI:10.1016/S2468-1253(20)30076-5]
18. Alqahtani SA, Schattenberg JM. Liver injury in COVID-19: The current evidence. United European Gastroenterology Journal. 2020; 8 (5): 509-19. [DOI:10.1177/2050640620924157]
19. Li L, Li S, Xu M, Yu P, Zheng S, Duan Z, et al. Risk factors related to hepatic injury in patients with corona virus disease 2019. MedRxiv Preprint. 2020. doi: 10.1101/2020.02.28.20028514. [DOI:10.1101/2020.02.28.20028514]
20. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020. 323 (11): 1061-1069. [DOI:10.1001/jama.2020.1585]
21. Preziosi ME, Monga SP. Update on the mechanisms of liver regeneration. Semin Liver Dis. 2017; 37 (2): 141-51. [DOI:10.1055/s-0037-1601351]
22. Ridruejo E, Soz A. The liver in times of COVID-19: What hepatologists should know. Ann Hepatol. 2020; 19 (4): 353-8. [DOI:10.1016/j.aohep.2020.05.001]
23. Sachdeva S, Khandait H, Kopel J, Aloysius MM, Desai R, Goyal H. NAFLD and COVID-19: A pooled analysis. SN Compr Clin Med. 2020; 2: 2726-9. [DOI:10.1007/s42399-020-00631-3]
24. Chauhan N, Jaggi M, Chauhan SC, Yallapu MM. COVID-19: Fighting the invisible enemy with microRNAs. Expert Rev Anti Infect Ther. 2021; 19 (2): 137-45. [DOI:10.1080/14787210.2020.1812385]
25. Kashyap VK, Dhasmana A, Massey A, Kotnala S, Zafar N, Jaggi M, et al. Smoking and COVID-19: Adding Fuel to the Flame. Int J Mol Sci. 2020; 21: 6581. [DOI:10.3390/ijms21186581]
26. Yang P, Wang X. COVID-19: A new challenge for human beings. Cell Mol Immunol. 2020; 17 (5): 555-7. [DOI:10.1038/s41423-020-0407-x]
27. Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res. 2011; 81: 85-164. [DOI:10.1016/B978-0-12-385885-6.00009-2]
28. de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Curr Top Microbiol Immunol. 2018; 419:1-42. [DOI:10.1007/82_2017_25]
29. Parvez MK. COVID-19 and coronaviral hepatitis: evidence of collateral damage. Future Virol. 2020; 15 (6): 325-9. [DOI:10.2217/fvl-2020-0065]
30. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020; 27 (3): 325-8. [DOI:10.1016/j.chom.2020.02.001]
31. Chan JF, Kok KH, Zhu Z, Chu H, To KKW, Yuan S, Yuen KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020; 9 (1): 221-36. [DOI:10.1080/22221751.2020.1719902]
32. Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006; 66: 193-292. [DOI:10.1016/S0065-3527(06)66005-3]
33. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020; 525 (1): 135-40. [DOI:10.1016/j.bbrc.2020.02.071]
34. Fung TS, Liu DX. Human coronavirus: Host-pathogen interaction. Annu Rev Microbiol. 2019; 73: 529-57. [DOI:10.1146/annurev-micro-020518-115759]
35. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579 (7798): 270-3. [DOI:10.1038/s41586-020-2012-7]
36. Wu F, Zhao S, Yu B, Chen YM, Wang W, Hu Y, et al. Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. BioRxiv. 2020; doi: https://doi.org/10.1101/2020.01.24.919183 [DOI:10.1101/2020.01.24.919183.]
37. Wrapp D, Wang N, Corbett K, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367 (6483): 1260-3. [DOI:10.1126/science.abb2507]
38. Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, Jiang C. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 2018; 18 (2): 290-301. [DOI:10.1038/cr.2008.15]
39. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020; 580 (7803): E7. [DOI:10.1038/s41586-020-2202-3]
40. Glowacka I, Bertram S, Müller MA, Allen PD, Soilleux EJ, Pfeerle S, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011; 85 (9): 4122-34. [DOI:10.1128/JVI.02232-10]
41. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA. 2020; 117: 11727-34. [DOI:10.1073/pnas.2003138117]
42. Knell AJ. Liver function and failure: the evolution of liver physiology. JR Coll Physicians Lond. 1980; 14(3): 205-8
43. Rui L. Energy metabolism in the liver. Compr Physiol. 2014; 4 (1): 177-97. [DOI:10.1002/cphy.c130024]
44. Tarasenko TN, McGuire PJ. The liver is a metabolic and immunologic organ: A reconsideration of metabolic decompensation due to infection in inborn errors of metabolism (IEM). Mol Genet Metab. 2017; 121 (4): 283-8. [DOI:10.1016/j.ymgme.2017.06.010]
45. Gordillo M, Evans T, Gouon-Evans V. Orchestrating liver development. Development. 2015; 142 (12): 2094-108. [DOI:10.1242/dev.114215]
46. Robinson MW, Harmon C, O'Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol. 2016; 13 (3): 267-76. [DOI:10.1038/cmi.2016.3]
47. Koo SH. Nonalcoholic fatty liver disease: Molecular mechanisms for the hepatic steatosis. Clin Mol Hepatol. 2013; 19 (3): 210-5. [DOI:10.3350/cmh.2013.19.3.210]
48. World Health Organization. Brazil Health Profile 2016; http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death.
49. Caetano KA, Bergamaschi FP, Carneiro MA, Pinheiro RS, Araújo LA, Matos MA, et al. Hepatotropic viruses (hepatitis A, B, C, D and E) in a rural Brazilian population: Prevalence, genotypes, risk factors and vaccination. Trans R Soc Trop Med Hyg. 2020; 114 (2): 91-8.
50. Bashir S, Assadullah Z, Kumar A, Barik M. Correlation of hepatitis A, B, C emphasis with COVID-19: Recent advances and future prospective. In book: A Text Book of the SARS-CoV-2: Guidelines and Protocol Development, MAHI publication. 2020; 284-97.
51. Wallace MC, Friedman SL. Hepatic fibrosis and the microenvironment: fertile soil for hepatocellular carcinoma development. Gene Expr. 2014; 16 (2): 77-84. [DOI:10.3727/105221614X13919976902057]
52. Bataller R, Gao B. Liver fibrosis in alcoholic liver disease. Semin Liver Dis. 2015; 35 (2): 146-56. [DOI:10.1055/s-0035-1550054]
53. Zhao J, Zhang Z, Luan Y, Zou Z, Sun Y, Li Y. Pathological functions of interleukin-22 in chronic liver inflammation and fibrosis with hepatitis B virus infection by promoting T helper 17 cell recruitment. Hepatology. 2014; 59 (4): 1331-42. [DOI:10.1002/hep.26916]
54. Wilbur K. Non-viral hepatitis. J Pharm Pract. 2009; 22 (4): 388-404. [DOI:10.1177/0897190008328694]
55. Mantovani A, Beatrice G, Dalbeni A. Coronavirus disease 2019 (COVID-19) and prevalence of chronic liver disease: a meta-analysis. Liver Int. 2020; 40: 1316-32. [DOI:10.1111/liv.14465]
56. Raza S, Rajak S, Anjum B, Sinha RA. Molecular links between nonalcoholic fatty liver disease and hepatocellular carcinoma. Hepatoma Res. 2019; 5: 42. [DOI:10.20517/2394-5079.2019.014]
57. Wallace MC, Friedman SL, Mann DA. Emerging and disease-specific mechanisms of hepatic stellate cell activation. Semin Liver Dis. 2015; 35 (2): 107-18. [DOI:10.1055/s-0035-1550060]
58. World Health Organization. Global hepatitis report 2017.
59. Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol. 2020; 13 (9): 1001-46. [DOI:10.1080/17512433.2020.1814743]
60. Ogholikhan S, Schwarz KB. Hepatitis vaccines. Vaccines (Basel). 2016; 4 (1): 6. [DOI:10.3390/vaccines4010006]
61. Basirnejad M, Bolhassani A, Sadat SM. The distinct role of small heat shock protein 20 on HCV NS3 expression in HEK-293T cell line. Avicenna J Med Biotechnol. 2018; 10 (3): 152-7.
62. Moradpour D, Penin F, Rice CM. Replication of hepatitis C virus. Nat Rev Microbiol. 2007; 5 (6): 453-63. [DOI:10.1038/nrmicro1645]
63. Santantonio T, Wiegand J, Gerlach JT. Acute hepatitis C: Current status and remaining challenges. J Hepatol. 2008; 49 (4): 625-33. [DOI:10.1016/j.jhep.2008.07.005]
64. Bartosch B, Vitelli A, Granier C, Goujon C. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem. 2003; 278 (43): 41624-30. [DOI:10.1074/jbc.M305289200]
65. Abdelwahab K, Ahmed Said ZN. Status of hepatitis C virus vaccination: Recent update. World J Gastroenterol. 2016; 22 (2): 862-73. [DOI:10.3748/wjg.v22.i2.862]
66. Kinchen VJ, Zahid MN, Flyak AI, Soliman MG, Learn GH. Broadly neutralizing antibody mediated clearance of human hepatitis C virus infection. Cell Host Microbe. 2018; 24 (5): 717-30. [DOI:10.1016/j.chom.2018.10.012]
67. Micallef JM, Kaldor JM, Dore GJ. Spontaneous viral clearance following acute hepatitis C infection: A systematic review of longitudinal studies. J Viral Hepat. 2006; 13 (1): 34-41. [DOI:10.1111/j.1365-2893.2005.00651.x]
68. Poustchi H, Esmaili S, Mohamadkhani A, Nikmahzar A, Pourshams A, Sepanlou SG, et al. The impact of illicit drug use on spontaneous hepatitis C clearance: Experience from a large cohort population study. PLoS ONE. 2011; 6 (8): e23830. [DOI:10.1371/journal.pone.0023830]
69. Terrault NA, Lok AS, McMahon BJ, Chang KM, Hwang JP, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology. 2018; 67 (4): 1560-99. [DOI:10.1002/hep.29800]
70. Liu CJ, Kao JH. Global perspective on the natural history of chronic hepatitis B: role of hepatitis B virus genotypes A to J. Semin Liver Dis. 2013; 33 (2): 97-102. [DOI:10.1055/s-0033-1345716]
71. Valaydon ZS, Locarnini SA. The virological aspects of hepatitis B. Best Pract Res Clin Gastroenterol. 2017; 31 (3): 257-64. [DOI:10.1016/j.bpg.2017.04.013]
72. Dane DS, Cameron CH, Briggs M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet. 1970; 1 (7649): 695-8. [DOI:10.1016/S0140-6736(70)90926-8]
73. Tuttleman JS, Pourcel C, Summers J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell. 1986; 47 (3): 451-60. [DOI:10.1016/0092-8674(86)90602-1]
74. Tu T, Budzinska MA, Shackel NA, Urban S. HBV DNA integration: molecular mechanisms and clinical implications. Viruses. 2017; 9 (4): 75. [DOI:10.3390/v9040075]
75. Tsai KN, Kuo CF, Ou JJ. Mechanisms of hepatitis B virus persistence. Trends Microbiol. 2018; 26 (1): 33-42. [DOI:10.1016/j.tim.2017.07.006]
76. Martin A, Lemon SM. Hepatitis A virus: From discovery to vaccines. Hepatology. 2006; 43 (2 Suppl 1): S164-72. [DOI:10.1002/hep.21052]
77. Farci P. Delta hepatitis: An update. J Hepatol. 2003; 39: S212-9. [DOI:10.1016/S0168-8278(03)00331-3]
78. Rizzetto M, Canese MG, Gerin JL, London WT, Sly DL, Purcell RH. Transmission of the hepatitis B virus-associated delta antigen to chimpanzees. J Infect Dis. 1980; 141 (5): 590-602. [DOI:10.1093/infdis/141.5.590]
79. Flores R, Gas ME, Molina-Serrano D, Nohales MA. Viroid replication: rolling-circles, enzymes and ribozymes. Viruses. 2009; 1 (2): 317-34. [DOI:10.3390/v1020317]
80. Chao M, Hsieh SY, Taylor J. Role of two forms of hepatitis delta virus antigen: evidence for a mechanism of self-limiting genome replication. J Virol. 1990; 64 (10): 5066-9. [DOI:10.1128/jvi.64.10.5066-5069.1990]
81. Chang FL, Chen PJ, Tu SJ, Wang CJ, Chen DS. The large form of hepatitis delta antigen is crucial for assembly of hepatitis delta virus. Proc Natl Acad Sci USA. 1991; 88 (19): 8490-4. 82. Rein DB, Stevens GA, Theaker J, Wittenborn JS, Wiersma ST. The global burden of hepatitis E virus genotypes 1 and 2 in 2005. Hepatology. 2012; 55 (4): 988-97. [DOI:10.1002/hep.25505]
82. Smith DB, Izopet J, Nicot F, Simmonds P, Jameel S, Meng XJ, et al. Update: Proposed reference sequences for subtypes of hepatitis E virus (species Orthohepevirus A). J Gen Virol. 2020; 101 (7): 692-8. [DOI:10.1099/jgv.0.001435]
83. Koonin EV, Gorbalenya AE, Purdy MA, Rozanov MN, Reyes GR, Bradley DW. Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses. Proc Natl Acad Sci U S A. 1992; 89 (17): 8259-63. [DOI:10.1073/pnas.89.17.8259]
84. Kamar N, Izopet J, Pavio N, Aggarwal R, Labrique A, Wedemeyer H, et al. Hepatitis E virus infection. Nat Rev Dis Primers. 2017; 3 (1): 17086. [DOI:10.1038/nrdp.2017.86]
85. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8 (4): 420-2. [DOI:10.1016/S2213-2600(20)30076-X]
86. Sarin SK, Choudhury A, Lau GK, Zheng MH, Ji D, Abd‑Elsalam S, et al. Pre-existing liver disease is associated with poor outcome in patients with SARS CoV2 infection. Hepatol Int. 2020; 14 (5): 690-700. [DOI:10.1007/s12072-020-10072-8]
87. Mantovani A, Scorletti E, Mosca A, Alisi A, Byrne CD, Targher G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism. 2020; 111S: 154170. [DOI:10.1016/j.metabol.2020.154170]
88. Sun J, Aghemo A, Forner A, Valenti L. COVID-19 and liver disease. Liver Int. 2020; 40 (6): 1278-81. [DOI:10.1111/liv.14470]
89. Hammond A, Ramersdorfer C, Palitzsch KD, Scholmerich J, Lock G. Fatal liver failure after corticosteroid treatment of a hepatitis B virus carrier. Dtsch Med Wochenschr. 1999; 124 (22): 687-90. [DOI:10.1055/s-2007-1024398]
90. Shiota G, Harada K, Oyama K, Udagawa A, Nomi T, Tanaka K, et al. Severe exacerbation of hepatitis after short-term corticosteroid therapy in patients with "latent" chronic hepatitis B. Liver. 2000; 20 (5): 415-20. [DOI:10.1034/j.1600-0676.2000.020005415.x]
91. Chai X, Hu L, Zhang Y, Han W, Lu Z, Ke A, et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. Biorxiv. 2020; doi: https://doi.org/10.1101/2020.02.03.931766 [DOI:10.1101/2020.02.03.931766.]
92. Li Y, Hu Y, Yu J, Ma T. Retrospective analysis of laboratory testing in 54 patients with severe- or critical-type 2019 novel coronavirus pneumonia. Lab Invest. 2020; 100: 794-800. [DOI:10.1038/s41374-020-0431-6]
93. Horvatits T, Drolz A, Trauner M, Fuhrmann V. Liver injury and failure in critical illness. Hepatology. 2019; 70 (6): 2204-15. [DOI:10.1002/hep.30824]
94. Feng G, Zheng KI, Yan QQ, Rios RS, Targher G, Byrne CD, et al. COVID-19 and liver dysfunction: current insights and emergent therapeutic strategies. J Clin Transl Hepatol. 2020; 8 (1): 18-24 [DOI:10.14218/JCTH.2020.00018]
95. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. 2020; 11: 827. [DOI:10.3389/fimmu.2020.00827]
96. Wan S, Yi Q, Fan S, Lv J, Zhang X, Guo L, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). MedRxiv. 2020; doi: 10.1101/2020.02.10.20021832. [DOI:10.1101/2020.02.10.20021832]
97. Hanafy AS, Abd-Elsalam S. Challenges in COVID-19 drug treatment in patients with advanced liver diseases: A hepatology perspective. World J Gastroenterol. 2020; 26 (46): 7272-86. [DOI:10.3748/wjg.v26.i46.7272]
98. Sun X, Wang T, Cai D, Hu Z, Chen J, Liao H, et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020; 53: 38-42 [DOI:10.1016/j.cytogfr.2020.04.002]
99. Li J, Fan JG. Characteristics and mechanism of liver injury in 2019 coronavirus disease. J Clin Transl Hepatol. 2020; 8 (1): 13-7. [DOI:10.14218/JCTH.2020.00019]
100. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395 (10229): 1033-4. [DOI:10.1016/S0140-6736(20)30628-0]
101. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020; 55: 102763. [DOI:10.1016/j.ebiom.2020.102763]
102. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med. 2020; 35 (5): 1545-9. [DOI:10.1007/s11606-020-05762-w]
103. Boeckmans J, Rodrigues RM, Demuyser T, Piérard D, Vanhaecke T, Rogiers V. COVID-19 and drug-induced liver injury: A problem of plenty or a petty point? Arch Toxicol. 2020; 94 (7): 1367-9. [DOI:10.1007/s00204-020-02734-1]
104. Lee D. Tylenol liver damage: signs, symptoms, dosage, treatment. MedicineNet 2016; www.medicinenet.com/tylenol_liver_damage/article.htm.
105. U.S. Food & Drug Administration. Remdesivir EUA letter of authorization 2020; www.fda.gov/media/137564/download.
106. U.S. Food and Drug Administration. FDA approves fi rst treatment for COVID-19. 2020; https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19.
107. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of COVID-19: Final report. N Engl J Med. 2020; 383 (19): 1813-26. [DOI:10.1056/NEJMoa2007764]
108. Szabo L. Chasing the elusive dream of a COVID cure. Kaiser Health News 2020; https://khn.org/news/chasing-the-elusive-dream-of-a-covid-cure.
109. Kulkarni AV, Kumar P, Tevethia HV, Premkumar M, Arab JP, Candia R, et al. Systematic review with meta-analysis: liver manifestations and outcomes in COVID-19. Aliment Pharmacol Ther. 2020; 52: 584-99. [DOI:10.1111/apt.15916]
110. Gadour E, Hassan Z, Shrwani K. COVID-19 Induced Hepatitis (CIH), definition and diagnostic criteria of a poorly understood new clinical syndrome. Gut. 2020; 69 (1): A1-51.
111. Fang D, Ma J, Guan J, Wang M, Song Y, Tian D, et al. Manifestations of digestive system in hospitalized patients with novel coronavirus pneumonia in Wuhan, China: a single-center, descriptive study. Chin J Dig. 2020; 12: E005.
112. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020; 382 (10): 929-36. [DOI:10.1056/NEJMoa2001191]
113. Lu H, Ai J, Shen Y, Li Y, Li T, Zhou X, et al. A descriptive study of the impact of diseases control and prevention on the epidemics dynamics and clinical features of SARS-CoV-2 outbreak in Shanghai, lessons learned for metropolis epidemics prevention. MedRxiv. 2020; doi: 10.1101/2020.02.19.20025031. [DOI:10.1101/2020.02.19.20025031]
114. Chau TN, Lee KC, Yao H, Tsang TY, Chow TC, Yeung YC, et al. SARS-associated viral hepatitis caused by a novel coronavirus: report of three cases. Hepatology. 2004; 39 (2): 302-10. [DOI:10.1002/hep.20111]
115. Guicciardi ME, Gores GJ. Apoptosis: a mechanism of acute and chronic liver injury. Gut. 2005; 54 (7): 1024-33. [DOI:10.1136/gut.2004.053850]
116. Chen X, Jiang Q, Ma Z, Ling J, Hu W, Cao Q, et al. Clinical characteristics of hospitalized patients with SARS-CoV-2 and hepatitis B virus coinfection. Virol Sin. 2020; 35 (6): 842-5. [DOI:10.1007/s12250-020-00276-5]
117. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020; 63 (3): 364-74. [DOI:10.1007/s11427-020-1643-8]
118. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020; 323 (20): 2052-9. [DOI:10.1001/jama.2020.6775]
119. Chen LF, Mo YQ, Jing J, Ma JD. Short-course tocilizumab increases risk of hepatitis B virus reactivation in patients with rheumatoid arthritis: a prospective clinical observation. Int J Rheum Dis. 2017; 20 (7): 859-69. [DOI:10.1111/1756-185X.13010]
120. Zha L, Li S, Pan L, Tefsen B, French N, Chen L, et al. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Med J Aust. 2020; 212 (9): 416-20. [DOI:10.5694/mja2.50577]
121. Blach S, Kondili LA, Aghemo A, Cai Z, Dugan E, Estes C, et al. Impact of COVID-19 on global HCV elimination efforts. J Hepatol. 2021; 74 (1): 31-6. [DOI:10.1016/j.jhep.2020.07.042]
122. Liu R, Zhao L, Cheng X, Han H, Li C, Li D, et al. Clinical characteristics of COVID-19 patients with hepatitis B virus infection-a retrospective study. Liver Int. 2021; 41 (4): 720-.30. [DOI:10.1111/liv.14774]
123. Mirzaie H, Vahidi M, Shokoohi M, Darvishian M, Sharifi H, Sharafi H, et al. COVID-19 among patients with hepatitis B or hepatitis C: A systematic review. MedRxiv. doi: https://doi.org/10.1101/2020.10.22.20216317 [DOI:10.1101/2020.10.22.20216317.]
124. Tian D, Ye Q. Hepatic complications of COVID-19 and its treatment. J Med Virol. 2020; 92 (10): 1818-24. [DOI:10.1002/jmv.26036]
125. Chen YW, Bennu Yiu CP, Wong KY. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Res. 2020; 9: 129. [DOI:10.12688/f1000research.22457.2]
126. Reddy KR, Beavers KL, Hammond SP. American Gastroenterological Association Institute guideline on the prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. Gastroenterology. 2015; 148 (1): 215-9. [DOI:10.1053/j.gastro.2014.10.039]
127. Gao LH, Nie QH, Zhao XT. Drug-drug interactions of newly approved direct-acting antiviral agents in patients with hepatitis C. Int J Gen Med. 2021; 14: 289-301. [DOI:10.2147/IJGM.S283910]
128. Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci. 2020; https://doi.org/10.1016/j.lfs.2020.117477 [DOI:10.1016/j.lfs.2020.117477.]
129. Marjot T, Webb GJ, Barritt AS, Moon AM, Stamataki Z, Wong VW, et al. COVID-19 and liver disease: mechanistic and clinical perspectives. Nat Rev Gastroenterol Hepatol. 2021; 18 (5): 348-64. [DOI:10.1038/s41575-021-00426-4]
130. Gerussi A, Rigamonti C, Elia C, Cazzagon N, Floreani A, Pozzi R, et al. Coronavirus disease 2019 in autoimmune hepatitis: A lesson from immunosuppressed patients. Hepatol Commun. 2020; 4 (9): 1257-62. [DOI:10.1002/hep4.1557]
131. Thng ZX, Smet MD, Lee CS, Gupta V, Smith, JR, McCluskey PJ, et al. COVID-19 and immunosuppression: A review of current clinical experiences and implications for ophthalmology patients taking immunosuppressive drugs. Br J Ophthalmol. 2021; 105 (3): 306-10. [DOI:10.1136/bjophthalmol-2020-316586]
132. Marjot T, Buescher G, Sebode M, Barnes E, Barritt AS, Armstrong MJ, et al. SARS-CoV-2 infection in patients with autoimmune hepatitis. J Hepatol. 2021; 74 (6): 1335-43. [DOI:10.1016/j.jhep.2021.01.021]

Add your comments about this article : Your username or Email:

Send email to the article author

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.