Volume 9, Issue 3 (9-2021)                   JoMMID 2021, 9(3): 133-141 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tayh G, Al Laham N, Fhoula I, Abedelateef N, El-Laham M, Elkader Elottol A et al . Frequency and Antibiotics Resistance of Extended-Spectrum Beta-Lactamase (ESBLs) Producing Escherichia coli and Klebsiella pneumoniae Isolated from Patients in Gaza Strip, Palestine. JoMMID. 2021; 9 (3) :133-141
URL: http://jommid.pasteur.ac.ir/article-1-362-en.html
Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
Abstract:   (144 Views)
Introduction: Extended-Spectrum β-Lactamases (ESBLs) hydrolyze broad-spectrum cephalosporin, monobactam, and penicillin. This study investigated ESBL-producing Escherichia coli and Klebsiella pneumoniae bacteria in the Gaza strip and explored their susceptibility to various antimicrobials to provide a reference for physicians in managing the hospital infection. Methods: Ninety-six isolates, comprising 69 E. coli and 27 K. pneumoniae were obtained from urine, wound, blood, and ear discharge samples from April-June 2013 in Gaza hospitals. The ESBL-producing isolates were screened using the double-disc diffusion test. Antibiotics susceptibility test was determined by the disc diffusion method on Mueller-Hinton agar, and PCR identified β-lactamases genes. Results: Our results revealed high rates of ESBL-producing K. pneumoniae (59.3%) and E. coli (39.1%) among isolates. About 65.1% of ESBL-producing isolates were susceptible to imipenem while exhibited 100% resistance to cefotaxime and ampicillin and 74.4% to sulfamethoxazole/trimethoprim. Except for imipenem, higher antibiotic resistance rates were observed among ESBL producers than non-ESBL producers. This study showed that the antimicrobial resistance and ESBLs were higher in K. pneumoniae isolates than E. coli isolates, and most K. pneumoniae isolates harbored simultaneously two or three β-lactamases-encoding genes. Conclusion: High ESBL-producing rates among K. pneumoniae and E. coli isolates and higher resistance rates to antibiotics among ESBL compared to non-ESBL producing isolates necessitate antimicrobial resistance surveillance and molecular characterization of ESBLs-producing bacteria to achieve a specific treatment.
Full-Text [PDF 1633 kb]   (74 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2021/05/24 | Accepted: 2021/09/19 | Published: 2021/10/12

1. Mehrgan H, Rahbar M. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli in a tertiary care hospital in Tehran, Iran. Int J Antimicrob Agents. 2008; 31 (2): 147-51. [DOI:10.1016/j.ijantimicag.2007.09.008]
2. Tayh G, Sallem RB, Yahia HB, Gharsa H, Klibi N, Boudabous A, et al. First report of extended-spectrum β-lactamases among clinical isolates of Escherichia coli in Gaza Strip, Palestine. J Glob Antimicrob Resist. 2016; 6: 17-21. [DOI:10.1016/j.jgar.2016.01.013]
3. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001; 14 (4): 933-51. [DOI:10.1128/CMR.14.4.933-951.2001]
4. Turner PJ. Extended-spectrum β-lactamases. Clin Infect Dis. 2005; 41 (Supplement 4): S273-S5. [DOI:10.1086/430789]
5. Tacconelli E, Magrini N, Kahlmeter G, Singh N. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization. 2017; 27: 318-27.
6. Duval A, Obadia T, Boëlle P-Y, Fleury E, Herrmann J-L, Guillemot D, et al. Close proximity interactions support transmission of ESBL-K. pneumoniae but not ESBL-E. coli in healthcare settings. PLoS Comput Biol. 2019; 15 (5): e1006496. [DOI:10.1371/journal.pcbi.1006496]
7. Akpaka PE, Swanston WH. Phenotypic detection and occurrence of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli at a tertiary hospital in Trinidad & Tobago. Braz J Infect Dis. 2008; 12: 516-20. [DOI:10.1590/S1413-86702008000600014]
8. Tayh G, Al Laham N, Elmanama A, SLAMA KB. Occurrence and antimicrobial susceptibility pattern of ESBL among Gram-negative bacteria isolated from burn unit of Al Shifa hospital in Gaza, Palestine. Int Arab J Antimicrob Agents. 2016; 5 (3). [DOI:10.3823/775]
9. Astal Z, Sharif FA, Abdallah SA, Fahd MI. Extended spectrum beta-lactamases in Eschericia coli isolated from community-acquired urinary tract infections in the Gaza Strip, Palestine. Ann Saudi Med. 2004; 24 (1): 55-7. [DOI:10.5144/0256-4947.2004.55]
10. Adwan G, Abu Jaber A. Frequency and molecular characterization of β-lactamases producing Escherichia coli isolated from North of Palestine. Br Microbiol Res J. 2016; 11 (5): 1-13. [DOI:10.9734/BMRJ/2016/22631]
11. Al-Zarouni M, Senok A, Rashid F, Al-Jesmi SM, Panigrahi D. Prevalence and antimicrobial susceptibility pattern of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the United Arab Emirates. Med Princ Pract. 2008; 17 (1): 32-6. [DOI:10.1159/000109587]
12. Ibrahim ALS, Youssef N. Prevalence of CTX-M, TEM and SHV Beta-lactamases in Clinical Isolates of Escherichia Coli and Klebsiella Pneumoniae Isolated From Aleppo University Hospitals, Aleppo, Syria. Arch Clin Infect Dis. 2015; 10 (2): e22540. [DOI:10.5812/archcid.22540]
13. Shehabia AA, Mahafzah A, Baadran I, Qadar FA, Dajani N. High incidence of Klebsiella pneumoniae clinical isolates to extended-spectrum B-lactam drugs in intensive care units. Diagn Microbiol Infect Dis. 2000; 36 (1): 53-6. [DOI:10.1016/S0732-8893(99)00108-X]
14. Cheaito K, Matar GM. The Mediterranean Region: A Reservoir for CTX-M-ESBL-Producing Enterobacteriacae. J JBS. 2014; 7: 1-6. [DOI:10.12816/0008205]
15. Batchoun RG, Swedan SF, Shurman AM. Extended Spectrum ß-Lactamases among Gram-negative Bacterial Isolates from Clinical Specimens in Three Major Hospitals in Northern Jordan. Int J Microbiol. 2009; 2009: 513874. [DOI:10.1155/2009/513874]
16. Hassan WM, Hashim A, Domany RAA. Plasmid mediated quinolone resistance determinants qnr, aac(6')-Ib-cr, and qep in ESBL-producing Escherichia coli clinical isolates from Egypt. Indian J Med Microbiol. 2012; 30 (4): 442. [DOI:10.4103/0255-0857.103766]
17. Al-Assil B, Mahfoud M, Hamzeh AR. Resistance trends and risk factors of extended spectrum ß-lactamases in Escherichia coli infections in Aleppo, Syria. Am J Infect Control. 2013; 41 (7): 597-600. [DOI:10.1016/j.ajic.2012.09.016]
18. Pechorsky A, Nitzan Y, Lazarovitch T. Identification of pathogenic bacteria in blood cultures: comparison between conventional and PCR methods. J Microbiol Methods. 2009; 78 (3): 325-30. [DOI:10.1016/j.mimet.2009.07.008]
19. Wayne P. CLSI performance standard of antimicrobial susceptibility testing: twenty-fourth international supplement. CLSI Document M100-S24, Clinical and Laboratory Standard Institute. 2014; 34 (1): 50-106.
20. Naik J, Desai P. Antibiotic resistance pattern in urinary isolates of Escherichia coli with special reference to extended spectrum β-Lactamases production. Int J Univers Pharm Life Sci. 2012; 3 (3): 0976-7126.
21. Jouini A, Vinué L, Slama KB, Saenz Y, Klibi N, Hammami S, et al. Characterization of CTX-M and SHV extended-spectrum β-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. J Antimicrob Chemother. 2007; 60 (5): 1137-41. [DOI:10.1093/jac/dkm316]
22. Hadadi A, Rasoulinejad M, Maleki Z, Yonesian M, Shirani A, Kourorian Z. Antimicrobial resistance pattern of Gram-negative bacilli of nosocomial origin at 2 university hospitals in Iran. Diagn Microbiol Infect Dis. 2008; 60 (3): 301-5. [DOI:10.1016/j.diagmicrobio.2007.10.010]
23. Peterson DL, Ko WC, Gottberg AV, Mohapatra S, Casellas JM, Goossens H. International prospective study of Klebsiella pneumoniae bacteremia implication of extended-spectrum beta-lactamase production in nosocomial infections. Ann Intern Med. 2004; 140: 26-32. [DOI:10.7326/0003-4819-140-1-200401060-00008]
24. El Astal ZY, Ramadan H. Occurrence of Extended-Spectrum Beta-Lactamases in isolates of Klepsiella pneumoniae and Escherichia coli. Inter J Integr Biol. 2008; 2 (2): 123-8.
25. Al-Masri M, Abu-Hasan N, Jouhari MM. Extended Spectrum β-lactamases in Clinical Isolates of Escherichia coli and Enterobacter cloacae Collected from Nablus District-Palestine. Br Microbiol Res J. 2016; 16 (3): 1-7. [DOI:10.9734/BMRJ/2016/27892]
26. Jamal W, Rotimi VO, Khodakhast F, Saleem R, Pazhoor A, Al Hashim G. Prevalence of extended-spectrum beta-lactamases in Enterobacteriaceae, Pseudomonas and Stenotrophomonas as determined by the VITEK 2 and E test systems in a Kuwait teaching hospital. Med Princ Pract. 2005; 14 (5): 325-31. [DOI:10.1159/000086930]
27. Kucukates E. Antimicrobial resistance among Gram-negative bacteria isolated from intensive care units in a Cardiology Institute in Istanbul, Turkey. Jpn J Infect Dis. 2005; 58 (4): 228.
28. Thomson KS, Moland ES. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum β-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2001; 45 (12): 3548-54. [DOI:10.1128/AAC.45.12.3548-3554.2001]
29. Alipourfard I, Nili NY. Antibiogram of Extended Spectrum Beta-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae isolated from Hospital Samples. Bangladesh j med microbiol. 2010; 4 (1): 32-6. [DOI:10.3329/bjmm.v4i1.8467]
30. Adwan K, Jarrar N, Abu-Hijleh A, Adwan G, Awwad E. Molecular characterization of Escherichia coli isolates from patients with urinary tract infections in Palestine. J Med Microbiol. 2014; 63 (2): 229-34. [DOI:10.1099/jmm.0.067140-0]
31. Sonnevend A, Rotimi VO, Kolodziejek J, Usmani A, Nowotny N, Pál T. High level of ciprofloxacin resistance and its molecular background among Campylobacter jejuni strains isolated in the United Arab Emirates. J Med Microbiol. 2006; 55 (11): 1533-8. [DOI:10.1099/jmm.0.46744-0]
32. Nimri L, Azaizeh B. First report of multidrug-resistant ESBL-producing urinary escherichia coli in Jordan. Microbiol Res J Int. 2012: 71-81. [DOI:10.9734/BMRJ/2012/1360]
33. Khosravi AD, Hoveizavi H, Mehdinejad M. Prevalence of Klebsiella pneumoniae encoding genes for CTX-M-1, TEM-1 and SHV-1 extended-spectrum beta lactamases (ESBL) enzymes in clinical specimens. Jundishapur JMicrobiol 2013; 6 (10). [DOI:10.5812/jjm.8256]
34. Feizabadi MM, Delfani S, Raji N, Majnooni A, Aligholi M, Shahcheraghi F, et al. Distribution of bla TEM, bla SHV, bla CTX-M genes among clinical isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran. Microb Drug Resist. 2010; 16 (1): 49-53. [DOI:10.1089/mdr.2009.0096]
35. Ojdana D, Sacha P, Wieczorek P, Czaban S, Michalska A, Jaworowska J, et al. The occurrence of blaCTX-M, blaSHV,and blaTEM. genes in extended-spectrum b-lactamasepositive isolates of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis in Poland. Int J Antibiot. 2014; 2014: 935842. [DOI:10.1155/2014/935842]
36. Saurina G, Quale JM, Manikal VM, Oydna E, Landman D. Antimicrobial resistance in Enterobacteriaceae in Brooklyn, NY: epidemiology and relation to antibiotic usage patterns. J Antimicrob Chemother. 2000; 45 (6): 895-8. [DOI:10.1093/jac/45.6.895]
37. Serefhanoglu K, Turan H, Timurkaynak FE, Arslan H. Bloodstream infections caused by ESBL-producing E. coli and K. pneumoniae: risk factors for multidrug-resistance. Braz J Infect Dis. 2009; 13 (6): 403-7. [DOI:10.1590/S1413-86702009000600003]
38. Somily AM, Habib HA, Absar MM, Arshad MZ, Manneh K, Al Subaie SS, et al. ESBL-producing Escherichia coli and Klebsiella pneumoniae at a tertiary care hospital in Saudi Arabia. J Infect Dev Ctries. 2014; 8 (09): 1129-36. [DOI:10.3855/jidc.4292]
39. Poovendran P, Vidhya N, Murugan S. Antimicrobial susceptibility pattern of ESBL and non-ESBL producing uropathogenic Escherichia coli (UPEC) and their correlation with biofilm formation. Intl J Microbiol Res. 2011; 4 (1): 56-63.

Add your comments about this article : Your username or Email:

Send email to the article author

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.