Volume 10, Issue 3 (9-2022)                   JoMMID 2022, 10(3): 98-103 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ebrahimi K, Shir Ovand S, Mohammedi A A N, Nabi-Afjadi M, Zalpoor H, Bahreini F. Biosynthesis of Copper Nanoparticles Using Aqueous Thymus daenensis (Celak) Flora and Investigation of Its Antifungal Activity. JoMMID 2022; 10 (3) :98-103
URL: http://jommid.pasteur.ac.ir/article-1-317-en.html
Biology Group, Payam Noor University, Tehran, Iran
Abstract:   (908 Views)
Introduction: In recent years, the green synthesis of nanoparticles has received much attention. Green synthesis has several advantages over other methods: cost-effectiveness, simplicity, and non-toxicity. In the present study, we obtained the aqueous extract of Thymus daenensis (Celak) flora, biosynthesized the copper nanoparticles (Cu-NPs), and evaluated the antifungal activity. Methods: UV-vis spectroscopy analyses, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) were used to identify the synthesized nanoparticles. The antifungal activity of the synthesized copper nanoparticles was evaluated using the microdilution method. Results: After adding the extract to the copper sulfate solution, the solution color changed from light blue to yellowish-green. A maximum peak at the wavelength of 414 nm confirmed the copper nanoparticles formation. Scanning electron microscopy demonstrated the particle size ranging from 30 nm to 42 nm. The biosynthesized Cu-NPs had an inhibitory effect against Candida albicans, Fusarium solani, Aspergillus Niger, and Aspergillus flavus. Conclusion: Our findings demonstrated that T. daenensis aqueous extract acts as a reducer and stabilizer factor. We successfully synthesized Cu-NPs from copper sulfate using T. daenensis (Celak) flora aqueous extract according to the UV-Vis spectrum, FTIR, and SEM results. This research was the first report of Cu-NPs synthesized from an aqueous T. daenensis (Celak) flora extract. Our simple, quick, and inexpensive method for biosynthesis of a nanoparticle, which showed antifungal activity, provides a new potential antifungal agent for therapeutic applications.
Full-Text [PDF 623 kb]   (526 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2020/11/9 | Accepted: 2022/09/19 | Published: 2022/10/12

References
1. Kanaparthy R, Kanaparthy A. The changing face of dentistry: nanotechnology. Int J Nanomed. 2011; 6: 2799-804. [DOI:10.2147/IJN.S24353]
2. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2012; 54 (5): 631-51. [DOI:10.1016/S0169-409X(02)00044-3]
3. Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan--DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med. 1999; 5 (4): 387-91. [DOI:10.1038/7385]
4. Basarkar A, Singh J. Poly (lactide-co-glycolide)-polymethacrylate nanoparticles for intramuscular delivery of plasmid encoding interleukin-10 to prevent autoimmune diabetes in mice. Pharm. Res. 2009; 26 (1): 72-81. [DOI:10.1007/s11095-008-9710-4]
5. Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater. 2010; 9 (11): 923-8. [DOI:10.1038/nmat2859]
6. Priya MM, Selvi BK, Paul J. Green synthesis of silver nanoparticles from the leaf extracts of Euphorbia hirta and Nerium indicum. Dig J Nanomater Biostruct (DJNB). 2011; 6 (2): 869-77.
7. Tagad CK, Dugasani SR, Aiyer R, Park S, Kulkarni A, Sabharwal S. Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sens Actuators B Chem. 2013; 183: 144-9. [DOI:10.1016/j.snb.2013.03.106]
8. Ezhilarasan B, Arumugam S, Lakshmi GYS. Green synthesis of silver nanoparticles from Cleome viscosa: synthesis and antimicrobial activity. Int Conf Biosc, Biochem Bioinform IPCBEE, IACSIT Press, Singapore2011. p. 334-7.
9. Mallikarjuna K, Narasimha G, Dillip G, Praveen B, Shreedhar B, Lakshmi CS, et al. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Dig J Nanomater Biostruct. 2011; 6 (1): 181-6.
10. Awwad AM, Salem NM. Green synthesis of silver nanoparticles by Mulberry Leaves Extract. Nanosci Nanotech. 2012; 2 (4): 125-8. [DOI:10.5923/j.nn.20120204.06]
11. Jagtap UB, Bapat VA. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind Crops Prod. 2013; 46: 132-7. [DOI:10.1016/j.indcrop.2013.01.019]
12. Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces. 2008; 65 (1): 150-3. [DOI:10.1016/j.colsurfb.2008.02.018]
13. Wijnhoven SW, Peijnenburg WJ, Herberts CA, Hagens WI, Oomen AG, Heugens EH, et al. Nano-silver-a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology. 2009; 3 (2): 109-38. [DOI:10.1080/17435390902725914]
14. Klueh U, Wagner V, Kelly S, Johnson A, Bryers J. Efficacy of silver‐coated fabric to prevent bacterial colonization and subsequent device‐based biofilm formation. J Biomed Mater Res. 2000; 53 (6): 621-31. https://doi.org/10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q [DOI:10.1002/1097-4636(2000)53:63.0.CO;2-Q]
15. Rechinger K. Nepeta. Flora Iranica. 1982; 150: 108-216.
16. Mozafarian V. Flora of Yazd province. Yazd Publ, Yazd (in Persian). 2000.
17. Akbarinia A, Ashoorabadi ES, Mirza M. Study on drug yield and essential oil content and composition of Thymus daenensis Celak. under cultivated condition. Iran J Medicinal Aromat Plants. 2010; 2 (2): 205-12.
18. Nickavar B, Mojab F, Dolat-Abadi R. Composition of the volatile oil of Thymus daenensis Celak. subsp. daenensis. J Med Plants. 2005; 4 (13): 45-9.
19. Alavi-Samani SM, Ghasemi Pirbalouti A, Ataei Kachouei M, Hamedi B. The influence of reduced irrigation on herbage, essential oil yield and quality of Thymus vulgaris and Thymus daenensis. J Med Herb. 2013; 4 (3): 109-13.
20. Omid Baigi R. Cultivation of Medicinal Plants and Important Notes about Them. Razavi Astan Ghods Press Pp. 1994: 20-40.
21. Mahmoudvand H, Ezatpour B, Jahanbakhsh S. The Antileishmanial activity of essential oils from some traditionally used medicinal plants in Iran. Herb Med J. 2016; 1 (1): 24-8.
22. Ebrahimi K, Madani M, Ashrafi B, Shiravand S, Sepahvand A. Antifungal Properties of Silver Nanoparticles Synthesized From Capparis spinosa Fruit. Res Mol Med. 2019; 7 (4): 43-50. [DOI:10.32598/rmm.7.4.43]
23. Ebrahimi K, Shiravand S, Mahmoudvand H. Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. Marmara Pharm J. 2017; 21 (4): 866-71. [DOI:10.12991/mpj.2017.31]
24. Wayne P. Reference method for broth dilution antifungal susceptibility testing of yeasts, approved standard. CLSI document M27-A2. 2002.
25. Sewell DL, Bove K, Callihan D. Protection of Laboratory Workers from Occupationally Acquired Infections; Approved Guideline-Third Edition (M29-A3). Wayne, PA: Clinical and Laboratory Standards Institute. 2005.
26. Fahiminia M, Fard RF, Ardani R, Naddafi K, Hassanvand M, Mohammadbeigi A. Indoor radon measurements in residential dwellings in Qom, Iran. Int J Radiat Res. 2016; 14 (4): 331-9. [DOI:10.18869/acadpub.ijrr.14.4.331]
27. Wayne P. Clinical and Laboratory Standards Institute (CLSI): Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. Carol Stream, IL: Allured Publishing Corporation. 2008.
28. Kanaparthy R, Kanaparthy A. The changing face of dentistry: nanotechnology. Int J nanomed. 2011; 6: 2799-804. [DOI:10.2147/IJN.S24353]
29. Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, et al. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother. 2004; 54 (6): 1019-24. [DOI:10.1093/jac/dkh478]
30. Yang X, Feng Y, He Z, Stoffella PJ. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol. 2005; 18 (4): 339-53. [DOI:10.1016/j.jtemb.2005.02.007]
31. Kulkarni VD, Kulkarni PS. Green synthesis of copper nanoparticles using Ocimum sanctum leaf extract. Int J Chem Stud. 2013; 1 (3): 1-4.
32. Saranyaadevi K, Subha V, Ravindran R, Renganathan S. Synthesis and characterization of copper nanoparticle using Capparis zeylanica leaf extract. Int J Chem Tech Res. 2014; 6 (10): 4533-41.
33. Naika HR, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D, et al. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Univ Sc. 2015; 9 (1): 7-12. [DOI:10.1016/j.jtusci.2014.04.006]
34. Angrasan J, Subbaiya R. Biosynthesis of copper nanoparticles by Vitis vinifera leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol Appl Sci. 2014; 3 (9): 768-74.
35. Gopinath M, Subbaiya R, Selvam MM, Suresh D. Synthesis of copper nanoparticles from Nerium oleander leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol App Sci. 2014; 3 (9): 814-8.
36. Lee HJ, Song JY, Kim BS. Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol. 2013; 88 (11): 1971-7. [DOI:10.1002/jctb.4052]
37. Guajardo-Pacheco MJ, Morales-Sánchez J, González-Hernández J, Ruiz F. Synthesis of copper nanoparticles using soybeans as a chelant agent. Materials lett. 2010; 64 (12): 1361-4. [DOI:10.1016/j.matlet.2010.03.029]
38. Woźniak-Budych MJ, Przysiecka Ł, Langer K, Peplińska B, Jarek M, Wiesner M, et al. Green synthesis of rifampicin-loaded copper nanoparticles with enhanced antimicrobial activity. J Mater Sci Mater Med. 2017; 28 (3): 42. [DOI:10.1007/s10856-017-5857-z]
39. Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn.(Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol. 2015; 31 (6): 865-73. [DOI:10.1007/s11274-015-1840-3]
40. Singh AK, Patel SK, Jafri A. Synthesis, Characterization and Antimicrobial Evaluation of Ru (II) and Co (III) Complexes of Phenylene-1, 2-bis (iminoflavone) Derivatives. J Biol Chem Chron. 2019; 5 (1): 61-70. [DOI:10.33980/jbcc.2019.v05i01.011]
41. Savithramma N, Rao ML, Rukmini K, Devi PS. Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. Int J Chemtech Res. 2011; 3 (3): 1394-402.
42. Roy K, Mao H-Q, Huang S-K, Leong KW. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat med. 1999; 5 (4): 387-91. [DOI:10.1038/7385]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.