Volume 8, Issue 3 (7-2020)                   JoMMID 2020, 8(3): 113-104 | Back to browse issues page


XML Print


Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (1963 Views)
Introduction: A simple and sensitive diagnosis method is needed to identify HIV infection in sera of untreated, treated, and drug-resistant patients. The purpose of this study is to determine whether heat shock proteins (Hsp)-27 and -20 and HP91 peptide along with HIV-1 polypeptides can serve as potential biomarkers to distinguish HIV infection in untreated, treated, and drug-resistant individuals compared to HIV-negative subjects. Methods: At first, human sera were obtained from 141 participants, including 20 naïve HIV-infected, 71 treated, 30 drug-resistant, 20 HIV-negative (healthy/control) individuals. The recombinant Hsp27, Hsp20, and five designed HIV-1 polypeptides were expressed in Escherichia coli and purified by affinity chromatography under denaturing or native conditions. Finally, the antibodies against these antigens were quantified in sera using ELISA. Results: Our data showed that HIV-infected patients significantly displayed higher serum levels of anti-Hsp27, anti-HP91, and anti-Nef-Tat-Gp160-P24, anti-Nef-Vpr-Gp160-P24, anti-Nef-Vif-Gp160-P24, anti-Nef-Vpu-Gp160-P24, and anti-Nef-Rev-Gp160-P24 polypeptide antibodies than healthy groups (p < 0.05), but not for anti-Hsp20. Moreover, the serum levels of antibodies against Hsp27, Hsp20, HP91, and HIV-1 polypeptides were not statistically significant between different groups of patients (p > 0.05). Conclusion: The levels of anti-Hsp27 and anti-HP91 antibodies in serum increased in HIV-1 seropositive subjects along with antibodies against five HIV-1 polypeptides suggesting their potential value as a diagnostic marker for HIV-1 infections.
Full-Text [PDF 1364 kb]   (739 Downloads)    
Type of Study: Original article | Subject: Infectious diseases and public health
Received: 2020/10/25 | Accepted: 2020/07/20 | Published: 2020/12/26

References
1. Chiozzini C, Toschi E. HIV-1 tat and immune dysregulation in AIDS pathogenesis: A therapeutic target. Curr Drug Targets. 2016; 17 (1): 33-45. [DOI:10.2174/1389450116666150825110658]
2. Esparza J. What has 30 years of HIV vaccine research taught us? Vaccines. 2013; 1 (4): 513-26. [DOI:10.3390/vaccines1040513]
3. Davoodi S, Bolhassani A, Sadat SM, Irani S. Design and in vitro delivery of HIV-1 multi-epitope DNA and peptide constructs using novel cell-penetrating peptides. Biotechnol Lett. 2019; 41 (11): 1283-98. [DOI:10.1007/s10529-019-02734-x]
4. Arya S, Lal P, Singh P, Kumar A. Recent advances in diagnosis of HIV and future prospects. Indian J Biotechnol. 2015; 14: 9-18
5. Bahraoui E, Benjouad A, Sabatier JM, Allain JP, Laurian Y, Montagnier L, et al. Relevance of anti-Nef antibody detection as an early serologic marker of human immunodeficiency virus infection. Blood. 1990; 76 (1): 257-64 [DOI:10.1182/blood.V76.1.257.257]
6. Lechner P, Buck D, Sick L, Hemmer B, Multhoff G. Serum heat shock protein 70 levels as a biomarker for inflammatory processes in multiple sclerosis. Mult Scler J Exp Transl Clin. 2018; 4 (2): 1-9. [DOI:10.1177/2055217318767192]
7. Santos-Junior VA, Lollo PCB, Cantero MA, Moura CS, Amaya-Farfan J, Morato PN. Heat shock proteins: Protection and potential biomarkers for ischemic injury of cardiomyocytes after surgery. Braz J Cardiovasc Surg. 2018; 33 (3): 291-302. [DOI:10.21470/1678-9741-2017-0169]
8. Hayem G, De Bandt M, Palazzo E, Roux S, Combe B, Eliaou JF, et al. Anti-heat shock protein 70 kDa and 90 kDa antibodies in serum of patients with rheumatoid arthritis. Ann Rheum Dis. 1999; 58 (5): 291-6. [DOI:10.1136/ard.58.5.291]
9. Milani A, Basirnejad M, Shahbazi S, Bolhassani A. HSP roles as biomarkers and antigens in bacterial and viral infections. JoMMID. 2016; 4 (1): 1-7.
10. Jaroszyński A, Jaroszyńska A, Zaborowski T, Drelich-Zbroja A, Zapolski T, Dąbrowski W. Serum heat shock protein 27 levels predict cardiac mortality in hemodialysis patients. BMC Nephrology. 2018; 19 (1): 359. [DOI:10.1186/s12882-018-1157-1]
11. Vidyasagar A, Wilson NA, Djamali A. Heat shock protein 27 (HSP27): Biomarker of disease and therapeutic target. Fibrogenesis Tissue Repair. 2012; 5: 7. [DOI:10.1186/1755-1536-5-7]
12. Wyciszkiewicz A, Kalinowska-Łyszczarz A, Nowakowski B, Kaźmierczak K, Osztynowicz K, Michalak S. Expression of small heat shock proteins in exosomes from patients with gynecologic cancers. Sci Rep. 2019; 9 (1): 9817. [DOI:10.1038/s41598-019-46221-9]
13. Tang T, Yang C, Brown HE, Huang J. Circulating heat shock protein 70 is a novel biomarker for early diagnosis of lung cancer. Dis Markers. 2018; 2018: 1-8. [DOI:10.1155/2018/6184162]
14. Bolhassani A, Agi E. Heat shock proteins in infection. Clin Chim Acta. 2019; 498: 90-100. [DOI:10.1016/j.cca.2019.08.015]
15. Wang Y, Jiang Z, Yan J, Ying S. HMGB1 as a potential biomarker and therapeutic target for malignant mesothelioma. Dis Markers. 2019; 2019: 1-10 [DOI:10.1155/2019/4183157]
16. Ramezani A, Aghakhani A, Soleymani S, Bavand A, Bolhassani A. Significance of serum antibodies against HPV E7, Hsp27, Hsp20 and Hp91 in Iranian HPV-exposed women. BMC Infect Dis. 2019; 19 (1): 142. [DOI:10.1186/s12879-019-3780-2]
17. Khairkhah N, Namvar A, Kardani K, Bolhassani A. Prediction of cross-clade HIV-1 T-cell epitopes using immunoinformatics analysis. Proteins. 2018; 86 (12): 1284-93. [DOI:10.1002/prot.25609]
18. Namazi F, Bolhassani A, Sadat SM, Irani S. Delivery of HIV-1 polyepitope constructs using cationic and amphipathic cell penetrating peptides into mammalian cells. Curr HIV Res. 2019; 17 (6): 408-28. [DOI:10.2174/1570162X17666191121114522]
19. Kardani K, Hashemi A, Bolhassani A. Comparison of HIV-1 Vif and Vpu accessory proteins for delivery of polyepitope constructs harboring Nef, Gp160 and P24 using various cell penetrating peptides. PLoS One. 2019; 14 (10): e0223844. [DOI:10.1371/journal.pone.0223844]
20. Saenz R, Futalan D, Leutenez L, Eekhout F, Fecteau JF, Sundelius S, et al. TLR4-dependent activation of dendritic cells by an HMGB1-derived peptide adjuvant. J Transl Med. 2014; 12: 211. [DOI:10.1186/1479-5876-12-211]
21. Li Z, Song Y, Xing R, Yu H, Zhang Y, Li Z, et al. Heat shock protein 70 acts as a potential biomarker for early diagnosis of heart failure. PLoS ONE. 2013; 8 (7): e67964. [DOI:10.1371/journal.pone.0067964]
22. Bleotu C, Chifiriuc MC, Pircalabioru G, Bertesteanu SVG, Grigore R, Ruta SM, et al. Significance of serum antibodies against HSP 60 and HSP 70 for the diagnostic of infectious diseases. Virulence. 2014; 5 (8): 828-31. [DOI:10.4161/21505594.2014.973800]
23. Maehana T, Tanaka T, Kitamura H, Fukuzawa N, Ishida H, Harada H, et al. Heat shock protein 90α is a potential serological biomarker of acute rejection after renal transplantation. PLoS ONE. 2016; 11 (9): e0162942. [DOI:10.1371/journal.pone.0162942]
24. Fu Y, Xu X, Huang D, Cui D, Liu L, Li J, et al. Plasma heat shock protein 90alpha as a biomarker for the diagnosis of liver cancer: An official, large-scale, and multicenter clinical trial. EBioMedicine. 2017; 24: 56-63. [DOI:10.1016/j.ebiom.2017.09.007]
25. Stope MB, Wiegank L, Weiss M, Diesing K, Koensgen D, Burchardt M, et al. Drug-induced modulation of heat shock protein HSPB1 in an ovarian cancer cell model. Anticancer Res. 2016; 36 (7): 3321-7.
26. Fanelli MA, Cuello Carrión FD, Dekker J, Schoemaker J, Ciocca DR. Serological detection of heat shock protein hsp27 in normal and breast cancer patients. Cancer Epidemiol Biomarkers Prev. 1998; 7 (9): 791-5.
27. Schuster C, Akslen LA, Straume O. Expression of heat shock protein 27 in melanoma metastases is associated with overall response to Bevacizumab monotherapy: Analyses of predictive markers in a clinical phase II study. PLoS ONE. 2016; 11 (5): e0155242. [DOI:10.1371/journal.pone.0155242]
28. Fraisier C, Papa A, Almeras L. High-mobility group box-1, promising serological biomarker for the distinction of human WNV disease severity. Virus Res. 2015; 195: 9-12. [DOI:10.1016/j.virusres.2014.08.017]
29. Richard SA. High-mobility group box 1 is a promising diagnostic and therapeutic monitoring biomarker in Cancers: A review. AIMS Mol Sci. 2019; 5 (4): 183-241. [DOI:10.3934/molsci.2018.4.183]
30. Paudel YN, Shaikh MF, Chakraborti A, Kumari Y, Aledo-Serrano A, Aleksovska K, et al. HMGB1: A common biomarker and potential target for TBI, neuroinflammation, epilepsy, and cognitive dysfunction. Front Neurosci. 2018; 12: 628. [DOI:10.3389/fnins.2018.00628]
31. Füst G, Beck Z, Bánhegyi D, Kocsis J, Bíró A, Prohászka Z. Antibodies against heat shock proteins and cholesterol in HIV infection. Mol Immunol. 2005; 42 (1): 79-85. [DOI:10.1016/j.molimm.2004.07.003]
32. Kocsis J, Prohászka Z, Bíró A, Füst G, Bánhegyi D. Elevated levels of antibodies against 70 kDa heat shock proteins in the sera of patients with HIV infection. J Med Virol. 2003; 71 (4): 480-2. [DOI:10.1002/jmv.10507]
33. Gurer C, Cimarelli A, Luban J. Specific incorporation of heat shock protein 70 family members into primate lentiviral virions. J Virol. 2002; 76 (9): 4666-70. [DOI:10.1128/JVI.76.9.4666-4670.2002]
34. Anraku I, Rajasuriar R, Dobbin C, Brown R, Lewin SR, Suhrbier A. Circulating heat shock protein 60 levels are elevated in HIV patients and are reduced by anti-retroviral therapy. PLoS One. 2012; 7 (9): e45291. [DOI:10.1371/journal.pone.0045291]
35. Ceccin ADF, Souza APD, Hilário GT, Muller DM, Romão PRT, Rodrigues Junior L. Hsp BP 1 and anti‐Hsp BP 1 levels in the serum of HIV‐infected individuals are associated to the disease progression. J Appl Microbiol. 2019; 127 (2): 576-85. [DOI:10.1111/jam.14230]
36. Vahabpour R, Soleymani S, Roohvand F, Zabihollahi R, Bolhassani A. In vitro anti-viral effects of small heat shock proteins 20 and 27: A novel therapeutic approach. Curr Pharm Biotechnol. 2019; 20 (12): 1011-7. [DOI:10.2174/1389201020666190729104648]
37. Brenner B, Wainberg M. Heat shock protein-based therapeutic strategies against human immunodeficiency virus type infection. Infect Dis Obstet Gynecol. 1999; 7 (1-2): 80-90. [DOI:10.1155/S1064744999000150]
38. Resman Rus K, Fajs L, Korva M, AvšičŽupanc T. HMGB1 is a potential biomarker for severe viral hemorrhagic fevers. PLoS Negl Trop Dis. 2016; 10 (6): e0004804. [DOI:10.1371/journal.pntd.0004804]
39. Naghavi MH, Nowak P, Andersson J, Sönnerborg A, Yang H, Tracey KJ et al. Intracellular high mobility group B1 protein (HMGB1) represses HIV-1 LTR-directed transcription in a promoter- and cell-specific manner. Virology. 2003; 314 (1): 179-89. [DOI:10.1016/S0042-6822(03)00453-7]
40. Nowak P, Barqasho B, Sönnerborg A. Elevated plasma levels of high mobility group box protein 1 in patients with HIV-1 infection. AIDs. 2007; 21 (7): 869-71. [DOI:10.1097/QAD.0b013e3280b079b6]
41. Greenway AL, Mills J, Rhodes D, Deacon NJ, McPhee DA. Serological detection of attenuated HIV-1 variants with nef gene deletions. AIDs. 1998; 12 (6): 555-61. [DOI:10.1097/00002030-199806000-00003]
42. Madhavi V, Wines BD, Amin J, Emery S, Lopez E, Kelleher A, et al. HIV-1 Env- and Vpu-specific antibody-dependent cellular cytotoxicity responses associated with elite control of HIV. J Virol. 2017; 91 (18): e00700-17. [DOI:10.1128/JVI.00700-17]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.