Volume 9, Issue 3 (9-2021)                   JoMMID 2021, 9(3): 170-177 | Back to browse issues page

XML Print

Department of Microbiology, School of Medicine, Tehran University of Medical Sciences
Abstract:   (393 Views)
Introduction: Heteroresistance is the phenomenon wherein subpopulations of microbes exhibit a range of resistance to an antibiotic and are prevalent in a broad range of microorganisms. Not much data on carbapenem and β-lactams heteroresistance among extra-intestinal pathogenic Escherichia coli (ExPEC) in blood infections is available. This study aimed to investigate the frequency of heteroresistance to β-lactams and carbapenems in ExPEC strains isolated from patients' blood in Tehran, Iran. Methods: Identification of E. coli isolates was performed using standard biochemical tests, and PFGE was employed to determine the E. coli isolates genotypes. Antibiotic resistance pattern to carbapenems (ertapenem, meropenem, and imipenem), cefotaxime, and cefepime was determined by measuring minimum inhibitory concentration (MIC). The results were used to assess β-lactam and carbapenem heteroresistance in E. coli isolates. Results: In this study, for the first time, heteroresistance to the antibiotics carbapenem (ertapenem, meropenem, and imipenem), cefotaxime, and cefepime was observed in E. coli isolates from blood samples. Sixteen samples had heteroresistance to antibiotics. Three and two isolates showed heteroresistance to imipenem and ertapenem, respectively. Simultaneous heteroresistance to two carbapenem family antibiotics in three isolates was detected. Also, three isolates showed heteroresistance to cefepime and five to cefotaxime. The imipenem-resistant isolates exhibited a higher level of heteroresistance than those resistant to other carbapenem antibiotics. Conclusions: The present study shows that heteroresistance is increasing in Iran. Furthermore, this study demonstrated increasing resistance to the carbapenem family.
Full-Text [PDF 1492 kb]   (116 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2020/08/4 | Accepted: 2021/03/20 | Published: 2021/10/12

1. Hjort K, Nicoloff H, Andersson DI. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica. Mol Microbiol. 2016; 102 (2): 274-89. [DOI:10.1111/mmi.13459]
2. Dale AP, Woodford N. Extra-intestinal pathogenic Escherichia coli (ExPEC): disease, carriage and clones. J Infect. 2015; 71 (6): 615-26. [DOI:10.1016/j.jinf.2015.09.009]
3. Poolman JT, Wacker M. Extraintestinal pathogenic Escherichia coli, a common human pathogen: challenges for vaccine development and progress in the field. J Infect Dis. 2016; 213 (1): 6-13. [DOI:10.1093/infdis/jiv429]
4. Köhler C-D, Dobrindt U. What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol. 2011; 301 (8): 642-7. [DOI:10.1016/j.ijmm.2011.09.006]
5. Johnson JR, Kuskowski MA, Smith K, O'Bryan TT, Tatini S. Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. J Infect Dis. 2005; 191 (7): 1040-9. [DOI:10.1086/428451]
6. Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother. 2011; 66 (1): 1-14. [DOI:10.1093/jac/dkq415]
7. Hu F, O'Hara JA, Rivera JI, Doi Y. Molecular features of community-associated extended-spectrum-β-lactamase-producing Escherichia coli strains in the United States. Antimicrob Agents Chemother. 2014; 58 (11): 6953-7. [DOI:10.1128/AAC.03321-14]
8. Johnson JR, Johnston B, Clabots C, Kuskowski MA, Castanheira M. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis. 2010; 51 (3): 286-94. [DOI:10.1086/653932]
9. Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat Rev Microbiol. 2010; 8 (3): 207-17. [DOI:10.1038/nrmicro2298]
10. Hertz FB, Schønning K, Rasmussen SC, Littauer P, Knudsen JD, Løbner-Olesen A, et al. Epidemiological factors associated with ESBL-and non ESBL-producing E. coli causing urinary tract infection in general practice. Infect Dis. 2016; 48 (3): 241-5. [DOI:10.3109/23744235.2015.1103895]
11. Graham SE, Zhang L, Ali I, Cho YK, Ismail MD, Carlson HA, et al. Prevalence of CTX-M extended-spectrum beta-lactamases and sequence type 131 in Korean blood, urine, and rectal Escherichia coli isolates. Infect Genet Evol. 2016; 41: 292-5. [DOI:10.1016/j.meegid.2016.04.020]
12. Kim H, Kim YA, Park YS, Choi MH, Lee GI, Lee K. Risk factors and molecular features of sequence type (ST) 131 extended-spectrum β-lactamase-producing Escherichia coli in community-onset bacteremia. Sci Rep. 2017; 7 (1): 1-8. [DOI:10.1038/s41598-017-14621-4]
13. Peterson E, Kaur P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol. 2018; 9: 2928. [DOI:10.3389/fmicb.2018.02928]
14. Ma W, Sun J, Yang S, Zhang L. Epidemiological and clinical features for cefepime heteroresistant Escherichia coli infections in Southwest China. Eur J Clin Microbiol Infect Dis. 2016; 35 (4): 571-8. [DOI:10.1007/s10096-015-2572-x]
15. Haidar G, Alkroud A, Cheng S, Churilla TM, Churilla BM, Shields RK, et al. Association between the presence of aminoglycoside-modifying enzymes and in vitro activity of gentamicin, tobramycin, amikacin, and plazomicin against Klebsiella pneumoniae carbapenemase-and extended-spectrum-β-lactamase-producing Enterobacter species. Antimicrob Agents Chemother. 2016; 60 (9): 5208-14. [DOI:10.1128/AAC.00869-16]
16. Guo X, Wang H, Cheng Y, Zhang W, Luo Q, Wen G, et al. Quinolone resistance phenotype and genetic characterization of Salmonella enterica serovar Pullorum isolates in China, during 2011 to 2016. BMC Microbiol. 2018; 18 (1): 225. [DOI:10.1186/s12866-018-1368-4]
17. Behbahani MR, Keshavarzi A, Pirbonyeh N, Javanmardi F, Khoob F, Emami A. Plasmid-related β-lactamase genes in Pseudomonas aeruginosa isolates: a molecular study in burn patients. J Med Microbiol. 2019; 68 (12): 1740-6.
18. Kaur A, Singh S. Prevalence of extended spectrum betalactamase (ESBL) and metallobetalactamase (MBL) producing Pseudomonas aeruginosa and Acinetobacter baumannii isolated from various clinical samples. J Pathog. 2018; 2018: 6845985. [DOI:10.1155/2018/6845985]
19. Uzunović S, Ibrahimagić A, Hodžić D, Bedenić B. Molecular epidemiology and antimicrobial susceptibility of AmpC-and/or extended-spectrum (ESBL) ß-lactamase-producing Proteus spp. clinical isolates in Zenica-Doboj Canton, Bosnia and Herzegovina. Med Glas (Zenica). 2016; 13 (2): 103-12.
20. Rossolini G, D'andrea M, Mugnaioli C. The spread of CTX‐M‐type extended‐spectrum β‐lactamases. Clin Microbiol Infect. 2008; 14: 33-41. [DOI:10.1111/j.1469-0691.2007.01867.x]
21. Ramos CP, Santana JA, Morcatti Coura F, Xavier RGC, Leal CAG, Oliveira Junior CA, et al. Identification and characterization of Escherichia coli, Salmonella spp., Clostridium perfringens, and C. difficile isolates from reptiles in Brazil. BioMed Res Int. 2019; 2019.
22. Satola SW, Farley MM, Anderson KF, Patel JB. Comparison of detection methods for heteroresistant vancomycin-intermediate Staphylococcus aureus, with the population analysis profile method as the reference method. J Clin Microbiol. 2011; 49 (1): 177-83. [DOI:10.1128/JCM.01128-10]
23. Khatib R, Riederer K, Shemes S, Musta A, Szpunar S. Correlation of methicillin-resistant Staphylococcus aureus vancomycin minimal inhibitory concentration results by Etest and broth microdilution methods with population analysis profile: lack of Etest overestimation of the MIC. Eur J Clin Microbiol Infect Dis. 2013; 32 (6): 803-6. [DOI:10.1007/s10096-012-1811-7]
24. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995; 33 (9): 2233-9. [DOI:10.1128/jcm.33.9.2233-2239.1995]
25. Davis MA, Hancock DD, Besser TE, Call DR. Evaluation of pulsed-field gel electrophoresis as a tool for determining the degree of genetic relatedness between strains of Escherichia coli O157: H7. J Clin Microbiol. 2003; 41 (5): 1843-9. [DOI:10.1128/JCM.41.5.1843-1849.2003]
26. Pavel AB, Vasile CI. PyElph-a software tool for gel images analysis and phylogenetics. BMC bioinformatics. 2012; 13: 9.
27. Gniadkowski M, Schneider I, Pal/ucha A, Jungwirth R, Mikiewicz B, Bauernfeind A. Cefotaxime-resistant Enterobacteriaceae isolates from a hospital in Warsaw, Poland: identification of a new CTX-M-3 cefotaxime-hydrolyzing β-lactamase that is closely related to the CTX-M-1/MEN-1 enzyme. Antimicrob Agents Chemother. 1998; 42 (4): 827-32. [DOI:10.1128/AAC.42.4.827]
28. Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem. 2014; 6: 25-64.
29. Medina E, Pieper DH. Tackling threats and future problems of multidrug-resistant bacteria. How to overcome the antibiotic crisis. Curr Top Microbiol Immunol. 2016; 398: 3-33.
30. Nicoloff H, Hjort K, Levin BR, Andersson DI. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat Microbiol. 2019; 4 (3): 504-14. [DOI:10.1038/s41564-018-0342-0]
31. Wang X, Kang Y, Luo C, Zhao T, Liu L, Jiang X, et al. Heteroresistance at the single-cell level: adapting to antibiotic stress through a population-based strategy and growth-controlled interphenotypic coordination. MBio. 2014; 5 (1): e00942-13.
32. Jain A, Mondal R. TEM & SHV genes in extended spectrum β-lactamase producing Klebsiella species & their antimicrobial resistance pattern. Indian J Med Res. 2008; 128 (6): 759-64.
33. Staji H, Khoshgoftar J, Javaheri Vayeghan A, Bejestani M. Phylogenetic grouping and assessment of virulence genotypes, with antibiotic resistance patterns, of Escherichia coli strains implicated in female urinary tract infections. Int J Enteric Pathog. 2016; 4 (1): 1-7. [DOI:10.17795/ijep31609]
34. Ciesielczuk H, Doumith M, Hope R, Woodford N, Wareham DW. Characterization of the extra-intestinal pathogenic Escherichia coli ST131 clone among isolates recovered from urinary and bloodstream infections in the United Kingdom. J Med Microbiol. 2015; 64 (12): 1496-503. [DOI:10.1099/jmm.0.000179]
35. Papagiannitsis CC, Študentová V, Jakubů V, Španělová P, Urbášková P, Žemličková H, et al. High prevalence of ST131 among CTX-M-producing Escherichia coli from community-acquired infections, in the Czech Republic. Microb Drug Resist. 2015; 21 (1): 74-84. [DOI:10.1089/mdr.2014.0070]
36. Shivaee A, Mirshekar M. Association between ESBLs Genes and Quinolone Resistance in Uropathogenic Escherichia coli Isolated from Patients with Urinary Tract Infection. Infect Epidemiol Microbiol. 2019; 5 (1): 15-23.
37. Wang MY, Geng JL, Chen YJ, Song Y, Sun M, Liu HZ, et al. Direct detection of mecA, bla SHV, bla CTX‐M, bla TEM and bla OXA genes from positive blood culture bottles by multiplex‐touchdown PCR assay. Lett Appl Microbiol. 2017; 64 (2): 138-43. [DOI:10.1111/lam.12676]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.