Volume 8, Issue 1 (1-2020)                   JoMMID 2020, 8(1): 14-18 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nejatbakhsh S, Ilkhanizadeh-Qomi M, Razzaghi-Abyaneh M, Jahanshiri Z. The Effects of Ellagic Acid on Growth and Biofilm Formation of Candida albicans. JoMMID. 2020; 8 (1) :14-18
URL: http://jommid.pasteur.ac.ir/article-1-251-en.html
Department of mycology, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (907 Views)
Introduction: Biofilm formation is one of the specific features of Candida albicans that protects it from antifungal agents and the host immune system. Also, Biofilm formation by C. albicans on the mucosal surfaces and medical devices are responsible for causing Candida nosocomial infection. Here, we investigated the effects of ellagic acid on C. albicans growth and biofilm formation regarding the expression of two essential genes that are involved in adhesion and yeast-hypha transition. Methods: The yeasts were treated with serial two-fold concentrations of ellagic acid (3.125-100 µg/ml) for 48 h at 35°C. The weights of the cultured yeasts were measured as an indicator of the fungal growth, and the biofilm formation was assessed by a tetrazolium salt (XTT) reduction assay. The expressions of HWP1 and ALS3 genes were assayed by real-time PCR. Results: Ellagic acid inhibited C. albicans growth 0.68%-82.44%, dose-dependently. The biofilm formation also reduced 2.61%-68.318%. Also, The expressions of HWP1 and ALS3 genes were notably suppressed by ellagic acid at different concentrations. Conclusion: Our results showed that ellagic acid is a potential candidate to eliminate C. albicans-generated biofilm by suppressing the expression of the involved genes.
Full-Text [PDF 375 kb]   (474 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2020/06/7 | Accepted: 2020/06/15 | Published: 2020/01/11

1. 1. L'Ollivier C, Labruere C, Jebrane A, Bougnoux ME, Enfert C, Bonnin A, et al. Using a multilocus microsatellite typing method improved phylogenetic distribution of Candida albicans isolates but failed to demonstrate association of some genotype with the commensal or clinical origin of the isolates. Infect Genet Evol. 2012; 12 (8): 1949-57. [DOI:10.1016/j.meegid.2012.07.025]
2. Ingles DO, Skvzypek MS, Arnaud MB, Binkley J, Shah P, Wymore F, et al. Improved gene ontology annotation for biofilmform, filamentous growth, and phenotypic switching in Candida albicans. Eukaryot. 2013; 12 (1): 101-8. [DOI:10.1128/EC.00238-12]
3. López-Ribot JL. Candida albicans biofilms: more than filamentation. Curr Biol. 2005; 15 (12): 453-5. [DOI:10.1016/j.cub.2005.06.020]
4. Li F, Svarovsky MJ, Karlsson AJ, Wagner JP, Marchillo K, Oshel P, et al. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot. 2007; 6 (6): 931-9. [DOI:10.1128/EC.00049-07]
5. Geffers C, Gastmeier P. Nosocomial infections and multidrug-resistant organisms in Germany: epidemiological data from KISS (The Hospital Infection Surveillance System). Dtsch Arztebl Int. 2011; 108 (6): 87-93. [DOI:10.3238/arztebl.2011.0087]
6. Wenzel RP, Gennings C. Bloodstream infections due to Candida species in the intensive care unit: identifying especially high-risk patients to determine prevention strategies. Clin Infect Dis. 2005; 41 (6): 389-93. [DOI:10.1086/430923]
7. Elving GJ, Van Der Mei HC, Busscher HJ, Weissenbruch RV, Albers FWJ. Comparison of the microbial composition of voice prosthesis biofilms from patients requiring frequent versus infrequent replacement. Ann Otol Rhinol Laryngol. 2005; 111 (1-3): 200-3. [DOI:10.1177/000348940211100302]
8. Kojic EM, Darouiche RO. Candida infections of medical devices. Clin Microbiol Rev. 2004; 17 (2): 255-67. [DOI:10.1128/CMR.17.2.255-267.2004]
9. Mafalda C, Miguel CT. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front Med. 2018; 5:28. [DOI:10.3389/fmed.2018.00028]
10. Raut JS, Shinde RB, Chauhan NM, Karuppayil SM. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling. 2013; 29 (1): 87-96. [DOI:10.1080/08927014.2012.749398]
11. Morales DK, Grahl N, Okegbe C, Dietrich LEP, Jacobs NJ, Hogan DA. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. MBio. 2013; 4: 1-9. [DOI:10.1128/mBio.00526-12]
12. Wong SS, Kao RY, Yuen KY, Yuen KY, Wang Y, Yang D, et al. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections. PLoS One. 2014; 9 (1): 9: e85836. [DOI:10.1371/journal.pone.0085836]
13. Kim-Ta CA, Arnason JT. Mini Review of Phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors. Molecules. 2015; 21 (29): 1-26. [DOI:10.3390/molecules21010029]
14. Clinical Laboratory Standards Institute (CLSI). CLSI reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. Approved Standard, CLSI document M27-A2. 2011.
15. Bakkiyaraj D, Nandhini JR, Malathy B, Pandian SK. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling. 2013; 29 (8): 929-37. [DOI:10.1080/08927014.2013.820825]
16. Morici P, Fais R, Rizzato C, Tavanti A, Lupetti A. Inhibition of Candida albicans biofilm formation by the synthetic lactoferricin derived peptide hLF1-11. Plos one. 2013; 11 (11): e0167470. [DOI:10.1371/journal.pone.0167470]
17. Rezaie S, Ban J, Mildner M, Poitschek C, Brna T, tTschachler E. Characterization of a cDNA clone, encoding a 70 kDa heat shock protein from the dermatophyte pathogen Trichophyton rubrum. Gene. 2000; 241 (1): 27-33. [DOI:10.1016/S0378-1119(99)00475-8]
18. Ding X, Liu Z, Su J, Yan D. Human serum inhibits adhesion and biofilm formation in Candida albicans. BMC Microbiol. 2014; 14 (80). [DOI:10.1186/1471-2180-14-80]
19. Losberger C, Ernst JF. Sequence of the Candida albicans gene encoding actin. Nucleic Acids Res. 1989; 17 (22): 9488. [DOI:10.1093/nar/17.22.9488]
20. Raut JS, Karuppayil SM. Phytochemicals as Inhibitors of Candida Biofilm. Curr Pharma Des. 2016; 22: 1-24. [DOI:10.2174/1381612822666160601104721]
21. Fox EP, Nobile CJ. A sticky situation: untangling the transcriptional network controlling biofilm development in Candida albicans. Transcript. 2012; 3 (6): 315-22. [DOI:10.4161/trns.22281]
22. Shinde RB, Raut JS, Karuppayil MS. Biofilm formation by Candida albicans on various prosthetic materials and its fluconazole sensitivity: a kinetic study. Mycoscience. 2012; 53 (3): 220-6. [DOI:10.1007/S10267-011-0155-Y]
23. Brighenti FL, Salvador MJ, Gontijo AVL, Delbem ACB, Delmeb AB, Soares CP. Plant extracts: initial screening, identification of bioactive compounds and effect against Candida albicans biofilms. Future Microbiol. 2016; 12 (1): 10.2217/fmb-2016-0094. [DOI:10.2217/fmb-2016-0094]
24. Li ZJ, Guo X, Dawuti G, Dou Q, Ma Y, Liu HG, et al. Antifungal activity of ellagic acid in vitro and in vivo. Phytother Res. 2015; 29 (7): 1019-25. [DOI:10.1002/ptr.5340]
25. Pani G, Dessì A, Dallocchio R, Scherm B, Azara E, Delogu G. Natural phenolic inhibitors of trichothecene biosynthesis by the wheat fungal pathogen fusarium culmorum: A computational insight into the structure-activity relationship. Plos one. 2016; 11(6): e0157316. [DOI:10.1371/journal.pone.0157316]
26. Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Fan QT, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2006; 2 (7): e63. [DOI:10.1371/journal.ppat.0020063]
27. Modrezewka B, Kurnatowski P. Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann Parasitol. 2015; 61: 3-9.
28. Khodavandi A, Harmal NS, Alizadeh F, Scully O, Sidik SM, Othman F, et al. Comparison between allicin and fluconazole in Candida albicans biofilm inhibition and in suppression of HWP1 gene expression. Phytomed. 2011; 19 (1): 56-63. [DOI:10.1016/j.phymed.2011.08.060]
29. Tsang PW, Bandara HM, Fong WP. Purpurin suppresses Candida albicans biofilm formation and hyphal development. PLoS One. 2012; 7 (11): e50866. [DOI:10.1371/journal.pone.0050866]
30. Rangkadilok N, Tongchusak S, Boonhok R, Chaiyaroj S, Junyapraset VB, Buajeeb W, et al. In vitro antifungal activities of longan (Dimocarpus longan Lour.) seed extract. Fitoterapia. 2012; 83 (3): 545-53. [DOI:10.1016/j.fitote.2011.12.023]

Add your comments about this article : Your username or Email:

Send email to the article author

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.