Volume 8, Issue 2 (4-2020)                   JoMMID 2020, 8(2): 50-55 | Back to browse issues page


XML Print


Department of Biology, Qom Branch, Islamic Azad University, Qom, Iran.
Abstract:   (2102 Views)
Introduction: The emergence of extended-spectrum β-lactamase (ESBL) and carbapenem-resistant Enterobacteriaceae, especially Klebsiella pneumoniae isolates, has become a severe concern worldwide. This study aimed to determine the prevalence of blaVIM and blaNDM genes among K. pneumoniae isolates.  Methods: One hundred-eighty-one K. pneumoniae isolates were obtained from different clinical specimens of patients hospitalized at Firoozgar hospital, Tehran, Iran. The isolates were identified by standard biochemical tests, and their identity was confirmed by Vitek 2 (bioMérieux, France), a fully automated system for bacterial identification. The isolates were subjected to antimicrobial susceptibility testing and screened for ESBL by double-disc synergy test (DDST) and modified Hodge test (MHT) for the detection of carbapenemase. PCR was also used to detect the presence of blaVIM and blaNDM resistance genes in the isolates. Results: The Vitek 2 system confirmed the biochemical test results. The highest and lowest rates of resistance to antibiotics belonged to cefepime (83.9%) and imipenem (55.2%).  Eighty-six and 100 isolates showed to produce ESB and KPC by DDST and MHT, respectively. About 71% and 97% of the 100 isolates were positive for blaVIM and blaNDM genes, respectively. Conclusion: The high rate of ESBL- and KPC-producing K. pneumoniae isolates in our hospital setting revealed resistance to conventional antibiotics, which limit our options in choosing appropriate antimicrobials. Although the management of infections associated with these organisms is challenging, it is essential to control such strains to prevent the outbreak.
Full-Text [PDF 380 kb]   (1559 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2020/05/27 | Accepted: 2020/04/13 | Published: 2020/08/16

References
1. 1. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 2015; 109 (7): 309-18. [DOI:10.1179/2047773215Y.0000000030]
2. Aslam B, Wang W, Arshad M, Khurshid M, Muzammil S, Rasool MH. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 2018; 11: 1645-58. [DOI:10.2147/IDR.S173867]
3. Fazlul MK, Farzana Y, Najnin A, Rashid MA, Nazmul MH. Detection of CTX-M-type ESBLs from Escherichia coli Clinical Isolates from a Tertiary Hospital, Malaysia. Baghdad Science Journal 2019; 16(3): 682-8. [DOI:10.21123/bsj.2019.16.3(Suppl.).0682]
4. Mohammadi Bandari N, Keyvani H, Zargar M, Talebi M, Zolfaghari MR. Epidemiological and Genetic Overview of the Klebsiella pneumoniae Carbapenemases (KPCs) in K. pneumoniae Isolated from the Clinical Samples in Iran. Int J Adv Biol 2019; 8(1): 75-85. [DOI:10.33945/SAMI/IJABBR.2020.1.8]
5. Mohammadi Bandari N, Zargar M, Keyvani H, Talebi M, Zolfaghari MR. Antibiotic Resistance Among Klebsiella pneumoniae, Molecular Detection and Expression Level of blaKPC and blaGES Genes by Real-Time PCR. Jundishapur J Microbiol 2019; 12(10): e93070. [DOI:10.5812/jjm.93070]
6. Dziri R, Ayari I, Barguellil F, Ouzari HI, El Asli MS, Klibi N. First Report of NDM and VIM Coproducing Klebsiella pneumoniae in Tunisia and Emergence of Novel Clones. Microb Drug Resist 2019; 25(9): 1282-6. [DOI:10.1089/mdr.2019.0115]
7. Adam MA, Elhag WI. Prevalence of Metallo-β-lactamase acquired genes among carbapenems susceptible and resistant Gram-negative clinical isolates using multiplex PCR, Khartoum hospitals, Khartoum Sudan. BMC Infect Dis 2018; 18(1): 668. [DOI:10.1186/s12879-018-3581-z]
8. Francis C, Eric D. Carbapenem resistance: A review. Med Sci 2017; 6(1): 1. [DOI:10.3390/medsci6010001]
9. Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, Rossolini GM. Cloning and characterization of bla VIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 1999; 43(7): 1584-90. [DOI:10.1128/AAC.43.7.1584]
10. Giakkoupi P, Xanthaki A, Kanelopoulou M, Vlahaki A, Miriagou V, Kontou S, Papafraggas E, Malamou-Lada H, Tzouvelekis LS, Legakis NJ, Vatopoulos AC. VIM-1 Metallo-β-lactamase-producing Klebsiella pneumoniae strains in Greek hospitals. J Clin Microbiol 2003; 41(8): 3893-6. [DOI:10.1128/JCM.41.8.3893-3896.2003]
11. Ktari S, Arlet G, Mnif B, Gautier V, Mahjoubi F, Jmeaa MB, Bouaziz M, Hammami A. Emergence of multidrug-resistant Klebsiella pneumoniae isolates producing VIM-4 metallo-β-lactamase, CTX-M-15 extended-spectrum β-lactamase, and CMY-4 AmpC β-lactamase in a Tunisian university hospital. Antimicrob Agents Chemother 2006; 50(12): 4198-01. [DOI:10.1128/AAC.00663-06]
12. Toner E, Adalja A, Gronvall GK, Cicero A, Inglesby TV. Antimicrobial resistance is a global health emergency. Health Secur 2015; 13(3): 153-5. [DOI:10.1089/hs.2014.0088]
13. Robin F, Aggoune-Khinache N, Delmas J, Naim M, Bonnet R. Novel VIM metallo-β-lactamase variant from clinical isolates of Enterobacteriaceae from Algeria. Antimicrob Agents Chemother 2010; 54(1): 466-70. [DOI:10.1128/AAC.00017-09]
14. Koizumi A, Kasahara K, Komatsu Y, Ui K, Mizuno F, Nakayama A, Mikasa K. Evaluation of the vitek 2 AST-N269 card for detection of meropenem resistance in imipenem-susceptible meropenem-resistant Enterobacteriaceae. J Clin Microbiol 2013; 51(11): 3908. [DOI:10.1128/JCM.02063-13]
15. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 26th ed. CLSI supplement M100. Wayne, PA: CLSI; 2016.
16. Khosravi AD, Hoveizavi H, Mehdinejad M. Prevalence of Klebsiella pneumoniae encoding genes for CTX-M-1, TEM-1 and SHV-1 extended-spectrum beta lactamases (ESBL) enzymes in clinical specimens. Jundishapur J Microbiol 2013; 6(10): e8256. [DOI:10.5812/jjm.8256]
17. Takayama Y, Adachi Y, Nihonyanagi S, Okamoto R. Modified Hodge test using Mueller-Hinton agar supplemented with cloxacillin improves screening for carbapenemase-producing clinical isolates of Enterobacteriaceae. J Med Microbiol 2015; 64(7): 774-7. [DOI:10.1099/jmm.0.000068]
18. Aarthi P, Bagyalakshmi R, Therese KL, Madhavan HN. Development of a novel reverse transcriptase polymerase chain reaction to determine the gram reaction and viability of bacteria in clinical specimens. Microbiol Res 2013; 168(8): 497-03. [DOI:10.1016/j.micres.2013.03.005]
19. Amiri A, Firoozeh F, Moniri R, Zibaei M. Prevalence of CTX-M-type and PER extended-spectrum β-lactamases among Klebsiella spp. isolated from clinical specimens in the teaching hospital of Kashan, Iran. Iran Red Crescent Med J 2016; 18(3): e22260. [DOI:10.5812/ircmj.22260]
20. Pishtiwan AH, Khadija KM. Prevalence of blaTEM, blaSHV, and blaCTX-M Genes among ESBL-Producing Klebsiella pneumoniae and Escherichia coli Isolated from Thalassemia Patients in Erbil, Iraq. Mediterr J Hematol I 2019; 11(1). [DOI:10.4084/mjhid.2019.041]
21. Yousefipour M, Rasoulinejad M, Hadadi A, Esmailpour N, Abdollahi A, Jafari S, Khorsand A. Bacteria Producing Extended Spectrum β-lactamases (ESBLs) in Hospitalized Patients: Prevalence, Antimicrobial Resistance Pattern and its Main Determinants. Iran J Pathol 2019; 14(1): 61. [DOI:10.30699/ijp.14.1.61]
22. Gupta V, Singla N, Chander J. Detection of ESBLs using third & fourth generation cephalosporins in double disc synergy test. Indian J Med Res 2007; 26(5): 486-8.
23. Leylabadlo HE, Pourlak T, Aghazadeh M, Asgharzadeh M, Kafil HS. Extended-spectrum beta-lactamase producing gram negative bacteria In Iran: A review. Afr J Infect Dis 2017; 11(2): 39-53. [DOI:10.21010/ajid.v11i2.6]
24. Nimer NA, Al-Saa'da RJ, Abuelaish O. Accuracy of the VITEK 2 system for a rapid and direct identification and susceptibility testing of gram-negative rods and gram-positive cocci in blood samples. East Mediterr Health J 2016; 22(3): 193-200. [DOI:10.26719/2016.22.3.193]
25. van Duin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017; 8(4): 460-9. [DOI:10.1080/21505594.2016.1222343]
26. Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2012; 18(9): 1503. [DOI:10.3201/eid1809.120355]
27. Siciliano RF, Gualandro DM, Mueller C, da Costa Seguro LF, Goldstein PG, Strabelli TM, Arias V, Accorsi TA, Grinberg M, Mansur AJ, de Oliveira Jr MT. Incremental value of B-type natriuretic peptide for early risk prediction of infective endocarditis. Int J Infect Dis Title 2014; 29: 120-4. [DOI:10.1016/j.ijid.2014.08.017]
28. Shoja S, Ansari M, Faridi F, Azad M, Davoodian P, Javadpour S, Farahani A, Mobarrez BD, Karmostaji A. Identification of Carbapenem-Resistant Klebsiella pneumoniae with Emphasis on New Delhi Metallo-Beta-Lactamase-1 (bla NDM-1) in Bandar Abbas, South of Iran. Microb Drug Resist 2018; 24(4): 447-54. [DOI:10.1089/mdr.2017.0058]
29. Bina M, Pournajaf A, Mirkalantari S, Talebi M, Irajian G. Detection of the Klebsiella pneumoniae carbapenemase (KPC) in K. pneumoniae Isolated from the Clinical Samples by the Phenotypic and Genotypic Methods. Iran J Pathol 2015;10(3): 199.
30. Haji Hashemi B, Farzanehkhah M, Dolatyar A, Imani M, Farzami MR, Rahbar M, Hajia MA. A study on prevalence of KPC producing from Klebsiella pneumoniae using Modified Hodge Test and CHROMagar in Iran. Ann Biol Res 2012; 3(12):5659-64.
31. Cury AP, Andreazzi D, Maffucci M, Caiaffa-Junior HH, Rossi F. The modified Hodge test is a useful tool for ruling out Klebsiella pneumoniae carbapenemase. Clinics 2012; 67(12): 1427-31. [DOI:10.6061/clinics/2012(12)13]
32. Dandachi I, Chaddad A, Hanna J, Matta J, Daoud Z. Understanding the Epidemiology of Multi-Drug Resistant Gram-Negative Bacilli in the Middle East Using a One Health Approach. Front Microbiol 2019; 10: 1941. [DOI:10.3389/fmicb.2019.01941]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.