Volume 8, Issue 1 (1-2020)                   JoMMID 2020, 8(1): 24-28 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabbagh P, Ferdosi-Shahandashti A, Rajabnia M, Maali A, Ferdosi Shahandashti E. Investigating Class I Integron and Antimicrobial Resistance Profile of Klebsiella pneumonia isolates in Babol, North of Iran. JoMMID. 2020; 8 (1) :24-28
URL: http://jommid.pasteur.ac.ir/article-1-242-en.html
Department of Medical Biotechnology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
Abstract:   (152 Views)
Introduction: Integronsare are mobile genetic elements which play an essential role in the distribution of antibiotic-resistant genes among bacteria. This study aimed to investigate the Class I integron in Klebsiella pneumoniae clinical isolates and its association with multiple drug resistance (MDR). Methods: We obtained 30 K. pneumoniae isolates from patients admitted to the ICU at Shahid Beheshti Hospital in Babol City, Mazandaran province, Iran. Different classes of antimicrobials were used to determine the resistance pattern. A polymerase chain reaction (PCR) was performed to detect the int1 gene of the class I integrons. We also investigated the suitability of the two pairs of primers for the detection of the intl gene. Results: Antibiotic susceptibility testing revealed 90% resistance to ceftizoxime, cefotaxime, and cefepime, 88.6% to cefazolin, gentamicin, ticarcillin, and ceftriaxone, 83.3% to imipenem, 60% to ciprofloxacin, 56.6% to ofloxacin, and 36.6% to amikacin. The PCRs with two pairs of primers, one designed previously and the other in this study, detected int1 in 36.6% and 60% of samples, respectively. Conclusion: The int1 gene was of high prevalence (60%) in K. pneumoniae isolates. This factor could play a significant role in the spread of MDR strains. Also, failure to adhere to essential points in the design of the primer can lead to the production of primers with low specificity and efficiency, which reduces the proper identification of antibiotic resistance genes.
Full-Text [PDF 485 kb]   (27 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2020/03/9 | Accepted: 2020/06/10 | Published: 2020/01/11

References
1. Al-Zahrani AJ, Akhtar N. Susceptibility Patterns of Extended Spectrum ß-Lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae isolated in a teaching hospital. Pak J Med Res. 2005; 44: 64-7.
2. Padmini SB, Raju BA. Evaluation of CIVA agar for rapid detection of extended spectrum [beta]-lactamases (ESBL) among isolates of Enterobacteriaceae. Indian J Med Res. 2008;127:195-7.
3. Rajabnia R, Asgharpour F, Ferdosi-Shahandashti E, Moulana Z. Nosocomial emerging of (VIM1) carbapenemase-producing isolates of Klebsiella pneumoniae in North of Iran. Iran J Microbiol. 2015; 7: 88-93.
4. Zarrilli R, Pournaras S, Giannouli M, Tsakris A. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents. 2013; 41: 11-9. [DOI:10.1016/j.ijantimicag.2012.09.008]
5. Eslami G, Seyedjavadi SS, Goudarzi H, Fallah F, Goudarzi M. Distribution of integrons among multidrug resistant E. coli and Klebsiella strains. J Res Med. 2010; 34: 61-5.
6. Bado I, Cordeiro NF, Robino L, García-Fulgueiras V, Seija V, Bazet C, et al. Detection of class 1 and 2 integrons, extended-spectrum ß -lactamases and qnr alleles in enterobacterial isolates from the digestive tract of Intensive Care Unit inpatients. Int J Antimicrob Agents. 2010; 36: 453-8. [DOI:10.1016/j.ijantimicag.2010.06.042]
7. Bouvier M, Demarre G, Mazel D. Integron cassette insertion: a recombination process involving a folded single strand substrate. EMBO J. 2005; 24: 4356-367. [DOI:10.1038/sj.emboj.7600898]
8. Leverstein-van Hall MA, M. Blok HE, T. Donders AR, Paauw A, Fluit AC, Verhoef J. Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. J Infect Dis. 2003; 187: 251-9. [DOI:10.1086/345880]
9. Van Belkum A, Goessens W, van der Schee C, Lemmens-den Toom N, Vos MC, Cornelissen J, et al. Rapid emergence of ciprofloxacin-resistant enterobacteriaceae containing multiple gentamicin resistance-associated integrons in a Dutch hospital. Emerg Infect Dis. 2001; 7: 862-71. [DOI:10.3201/eid0705.017515]
10. Avlami A, Bekris S, Ganteris G, Kraniotaki E, Malamou-Lada E, Orfanidou M, et al. Detection of metallo-ß-lactamase genes in clinical specimens by a commercial multiplex PCR system. J Microbiol Methods. 2010; 83: 185-7. [DOI:10.1016/j.mimet.2010.08.014]
11. Japoni S, Japoni A, Farshad S, Ali AA, Jamalidoust M. Association between existence of integrons and multi-drug resistance in Acinetobacter isolated from patients in southern Iran. Pol J Microbiol. 2011; 60: 163-8. [DOI:10.33073/pjm-2011-023]
12. Lima AM, de Melo ME, Alves LC, Brayner Fb, Lopes AC. Investigation of class 1 integrons in Klebsiella pneumoniae clinical and microbiota isolates belonging to different phylogenetic groups in Recife, State of Pernambuco. Rev Soc Bras Med Trop. 2014; 47: 165-9. [DOI:10.1590/0037-8682-0021-2014]
13. Domingues S, da Silva GJ, Nielsen KM. Global dissemination patterns of common gene cassette arrays in class 1 integrons. Microbiology. 2015; 161: 1313-37. [DOI:10.1099/mic.0.000099]
14. Rajabnia R, Asgharpour F, Ferdosi-Shahandashti E, Khalilian M, Norkhomami S, Shafi M, et al. Class 1 integron in Pseudomonas aeruginosa isolates from different places and devices of ICU in Babol, Iran. Jundishapur J Microbiol. 2013; 6: 138-43. [DOI:10.5812/jjm.4850]
15. Moradian Kouchaksaraei F, Ferdosi-Shahandashti E, Molana Z, Asgharpour F, Mojtahedi A, Rajabnia R. Molecular detection of Integron genes and pattern of antibiotic resistance in Pseudomonas aeruginosa strains isolated from intensive care unit, Shahid Beheshti Hospital, North of Iran. Int J Mol Cell Med. 2012; 1: 209-17.
16. Akrami F, Shahandashti EF, Yahyapour Y, Sadeghi M, Khafri S, Pournajaf A, et al. Integron types, gene cassettes and antimicrobial resistance profile of Acinetobacter baumannii isolated from BAL samples in Babol, north of Iran. Microb Pathog. 2017; 109: 35-8. [DOI:10.1016/j.micpath.2017.05.005]
17. Di Conza JA, Gutkind GO. Integrons: gene collectors. Rev Argent Microbiol. 2010; 42: 63-78.
18. AL-Thahab AA. Molecular detection of extended-spectrum beta-lactamases in clinical isolates of Acinetobacter baumannii. J Biol Agric Healthc. 2013; 3: 32-9.
19. Molana Z, Ferdosi-Shahandashti E, Gharavi S, Shafii M, Norkhomami S, Ahangarkani F, et al. Molecular investigation of class i integron in klebsiella pneumoniae isolated from intensive care unit (shahid beheshti hospital of babol; 2010). JBUMS. 2011; 13: 7-13.
20. CLSI, Performance standards for antimicrobial disk susceptibility tests; approved standard, 20th edn. M100-S20. 2010.
21. Rao AN, Barlow M, Clark LA, Boring III JR, Tenover FC, McGowan Jr JE. Class 1 integrons in resistant Escherichia coli and Klebsiella spp., US hospitals. Emerg Infect Dis. 2006; 12: 1011-14. [DOI:10.3201/eid1206.051596]
22. Li B, Hu Y, Wang Q, Yi Y, Woo PC, Jing H, et al. Structural diversity of class 1 integrons and their associated gene cassettes in Klebsiella pneumoniae isolates from a hospital in China. PloS one. 2013; 8: e75805. [DOI:10.1371/journal.pone.0075805]
23. Ahangarzadeh Rezaee M, Langarizadeh N, Aghazadeh M. First report of class 1 and class 2 integrons in multidrug-resistant Klebsiella pneumoniae isolates from northwest Iran. Jpn J Infect Dis. 2012; 65: 256-9. [DOI:10.7883/yoken.65.256]
24. Canton R, Coque TM, Baquero F. Multi-resistant Gram-negative bacilli: from epidemics to endemics. Curr Opin Infect Dis. 2003; 16: 315-25. [DOI:10.1097/00001432-200308000-00003]
25. Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, et al. Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis. 2001; 32: S114-S32. [DOI:10.1086/320184]
26. Ahanjan M, Naderi F, Solimanii A. Prevalence of Beta-lactamases Genes and Antibiotic Resistance Pattern of Klebsiella pneumoniae Isolated from Teaching Hospitals, Sari, Iran, 2014. JMUMS. 2017; 27: 79-87.
27. Farivar AS, Nowroozi J, Eslami G, Sabokbar A, Hashemi A. The study of antibiotic resistance among Klebsiella pneumoniae and expression level of oqxA and acrA genes by using real-time PCR. Research in Medicine. 2016; 40: 42-8.
28. Karbasizaed V, Badami N, Emtiazi G. Antimicrobial, heavy metal resistance and plasmid profile of coliforms isolated from nosocomial infections in a hospital in Isfahan, Iran. Afr J Biotechnol. 2003; 2: 379-83. [DOI:10.5897/AJB2003.000-1078]
29. Lye DC, Kwa AL, Chlebicki P. World health day 2011: Antimicrobial resistance and practical solutions Ann Acad Med Singapore. 2011; 40: 156-7.
30. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009; 53: 5046-54. [DOI:10.1128/AAC.00774-09]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.