Volume 7, Issue 1 And 2 (1-2019)                   JoMMID 2019, 7(1 And 2): 6-11 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soleimani Sasani M, Eftekhar F, Hosseini M. Isolation and Characterization of a Klebsiella pneumoniae Specific Lytic Bacteriophage from a Hospital Waste-water Treatment Plant. JoMMID 2019; 7 (1 and 2) :6-11
URL: http://jommid.pasteur.ac.ir/article-1-192-en.html
Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University
Abstract:   (4194 Views)
Introduction: Phage therapy has gained interest as a potential alternative for treatment of infections caused by multidrug-resistant (MDR) pathogens. This study aimed to isolate a lytic bacteriophage with the potential to lyse clinical isolates of Klebsiella pneumoniae. Methods: Water samples were collected from a hospital waste-water treatment plant in Tehran. The samples were filtered and mixed with an overnight grown culture of K. pneumoniae. (ATCC 10031) followed by incubation at 37°C overnight. Phage titration, latent period, and burst size measurements were carried out by the double-layer agar method using the K. pneumoniae ATCC strain. The isolated phage w:as char:acterized by transmission electron microscopy (TEM), thermal, pH, and chloroform stability. Susceptibility of Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, ESBL producing K. pneumoniae and 51 MDR K. pneumoniae isolates was measured by placing 20 µl of the phage suspension (108 PFU) onto bacterial lawns followed by incubation at 37°C overnight. Formation of clear zones indicated susceptibility. Results: The isolated lytic bacteriophage formed small clear plaques with a latent period of 40 min and a burst time of 52 min, corresponding to 35-40 phage particles per infected cell. TEM results showed that the phage resembled the tailed Siphoviridae family and was designated vB_KpnS-Teh.1. The phage vB_KpnS-Teh.1 was most stable at 37°C, pH 7 and was resistant to chloroform. Conclusion: The isolated lytic phage showed specificity towards K. pneumoniae. Further research will determine its potential in the treatment of K. pneumoniae infections.
Full-Text [PDF 529 kb]   (1808 Downloads)    
Type of Study: Original article | Subject: Microbial pathogenesis
Received: 2019/05/13 | Accepted: 2019/06/17 | Published: 2019/11/3

References
1. 1. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods and pathogenicity factors. Clin Microbiol Rev. 1998; 11: 589-603. [DOI:10.1128/CMR.11.4.589]
2. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev. 2005; 18: 657-86. [DOI:10.1128/CMR.18.4.657-686.2005]
3. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001; 14: 933-51. [DOI:10.1128/CMR.14.4.933-951.2001]
4. Harper DR, Enright MC. Bacteriophages for the treatment of Pseudomonas aeruginosa infections. J Appl Microbiol. 2011; 111: 1-7. [DOI:10.1111/j.1365-2672.2011.05003.x]
5. Soothill J, Hawkins C, Anggard E, Harper D. Therapeutic use of bacteriophages. Lancet Infect Dis. 2004; 4: 544-5. [DOI:10.1016/S1473-3099(04)01127-2]
6. Manjunath NS, Agsar D, Jagannath KV, Rangaswamy BE, Rao SC, Anand S, et al. Characterization and in vitro efficacy studies of wide host range lytic bacteriophage Φdmec-1 Infecting Escherichia coli isolated from pyogenic skin infections. DAMA Int. 2013; 2 (2): 47-54.
7. Karumidze N, Kusradze I, Rigvava S, Goderdzishvili M, Rajakumar K, Alavidze Z. Isolation and characterisation of lytic bacteriophages of Klebsiella pneumoniae and Klebsiella oxytoca. Current Microbiol. 2013; 66 (3): 251-8. [DOI:10.1007/s00284-012-0264-7]
8. Drulis-Kawa Z, Mackiewicz P, Kęsik-Szeloch A, Maciaszczyk-Dziubinska E, Weber-Dąbrowska B, Dorotkiewicz-Jach A, et al. Isolation and characterisation of KP34-a novel φKMV-like bacteriophage for Klebsiella pneumoniae. Appl Microbiol Biotechnol. 2011; 90 (4): 1333-45. [DOI:10.1007/s00253-011-3149-y]
9. D'Andrea MM, Marmo P, Henrici De Angelis L, Palmieri M, Ciacci N, Di Lallo, et al. φBO1E, a newly discovered lytic bacteriophage targeting carbapenemase-producing Klebsiella pneumoniae of the pandemic Clonal Group 258 clade II lineage. Sci Reports. 2017; 7: 2614. [DOI:10.1038/s41598-017-02788-9]
10. Kęsik-Szeloch A, Drulis-Kawa Z, Weber-Dąbrowska B, Kassner J, Majkowska-Skrobek G, Augustyniak D, et al. Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae. Virol. 2013; 10 (1):1-12. [DOI:10.1186/1743-422X-10-100]
11. Simoliūnas E, Kaliniene L, Truncaite L, Zajanckauskaite A, Staniulis J, Kaupinis A, Ger M, Valius M, Meskys R. Klebsiella phage vB_KleM-RaK2-a giant singleton virus of the family Myoviridae. PLoS One. 2013; 8 (12): e60717. [DOI:10.1371/annotation/a1d15675-2942-41ba-92f4-3dad6bc6cac6]
12. Jamal M, Hussain T, Das CR, Andleeb S. Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm. J Med Microbiol. 2015; 64 (4): 454-62. [DOI:10.1099/jmm.0.000040]
13. Hung CH, Kuo CF, Wang CH, Wu CM, Tsao N. Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice. Antimicrob Agent Chemother. 2011; 55 (4): 1358-65. [DOI:10.1128/AAC.01123-10]
14. Cao F, Wang X, Wang L, Li Z, Che J, Wang L, et al. Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice. Biomed Res Int. 2015; Article ID 752930. [DOI:10.1155/2015/752930]
15. Pajunen M, Kiljunen S, Skurni M. Bacteriophage fYeO3-12, specific for Yersinia enterocolitica serotype O: 3 is related to coliphages T3 and T7. J Bacteriol. 2000; 182 (18): 5114-20. [DOI:10.1128/JB.182.18.5114-5120.2000]
16. Raei F, Eftekhar F, Feizabadi MM. Prevalence of quinolone resistance among extended-spectrum β-lactamase producing uropathogenic Klebsiella pneumoniae. Jundishapur J Microbiol. 2014; 7 (6):e10887. [DOI:10.5812/jjm.10887]
17. Fokine A, Rossmann MG. Molecular architecture of tailed double-stranded DNA phages. Bateriophage. 2014; 4: e28281. [DOI:10.4161/bact.28281]
18. Kropinski AM, Prangishvili D, Lavigne R. The creation of a rational scheme for the nomenclature of viruses of Bacteria and Archaea. Environ Microbiol. 2009; 11: 2775-7. [DOI:10.1111/j.1462-2920.2009.01970.x]
19. Komijani M, Bouzari M, Rahimi F. Detection and characterization of a novel lytic bacteriophage (vB-KpneM-Isf48) against Klebsiella pneumoniae isolates from infected wounds carrying antibiotic-resistance genes (TEM, SHV, and CTX-M). Iran Red Crescent Med J. 2017; 19 (2): e34475. [DOI:10.5812/ircmj.34475]
20. Carl G, Jäckel C, Grützke J, Hertwig S, Grobbel M, Malorny B, et al. Complete genome sequence of the temperate Klebsiella pneumoniae phage KPP5665-2. Genome Announc. 2017; 5 (43): e01118-17. [DOI:10.1128/genomeA.01118-17]
21. Chadha P, Katare OP, Chhibber S. Liposome loaded phage cocktail: Enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections. Burns. 2017; 43 (7): 1532-43. [DOI:10.1016/j.burns.2017.03.029]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.