Volume 6, Issue 4 (10-2018)                   JoMMID 2018, 6(4): 112-117 | Back to browse issues page

DOI: 10.29252/JoMMID.6.4.112


XML Print


Department of Biology, Gorgan Branch, Islamic Azad University, Gorgan, Iran
Abstract:   (791 Views)
Introduction: Urinary tract infection is a common nosocomial infection that has recently become difficult to treat because of the increased emergence of multi-drug resistant strains. This study aims to determine the minimum inhibitory concentration, and molecular pattern of resistance to fosfomycin in Escherichia coli isolates originated from patients hospitalized with urinary tract infection in the intensive care unit (ICU) and coronary care unit (CCU) in three hospitals of Gorgan, northeast of Iran. Methods: Urine samples were obtained from 106 patients in three hospitals of Gorgan, northeast of Iran. After isolation and identification of E. coli isolates, the Kirby-Bauer disk diffusion test was performed to evaluate the antibiotic susceptibility pattern. Minimum inhibitory concentrations (MICs) of isolates to fosfomycin were determined using the agar dilution method over a concentration range of 0.5-1024 μg/mL. Also, the presence of murA and glpT genes were investigated using polymerase chain reaction with specific primers. Results: Frequency of E. coli isolates was 62.3%, most of which originated from ICU patients (56.5%). The rate of susceptibility to fosfomycin was 85%. Moreover, the MIC of 80.3% of the isolates was less than or equal to 64 μg/mL. We also detected the murA and glpT genes in 77.8% and 22.2% of fosfomycin-resistant isolates, respectively. Conclusion: Our results indicated a high bactericidal activity of fosfomycin against uropathogenic E. coli isolates. In agreement with similar studies, we concluded that the presence of murA is significantly associated with the development of resistance to fosfomycin.
Full-Text [PDF 945 kb]   (184 Downloads)    
Type of Study: Original article |
Received: 2019/04/20 | Accepted: 2019/06/16 | Published: 2019/07/3

References
1. 1. Azap Ö, Togan T, Yesilkaya A, Arslan H, Haberal M. Antimicrobial susceptibilities of uropathogen Escherichia coli in renal transplant recipients: dramatic increase in ciprofloxacin resistance. Transplant Proc. 2013; 45 (3): 956-7. [DOI:10.1016/j.transproceed.2013.03.006]
2. Riccabona M. Urinary tract infections in children. Curr Opin Urol. 2003; 13 (1):59-62. [DOI:10.1097/00042307-200301000-00010]
3. Wagenlehner FM, Hoyme U, Kaase M, Funfstuck R, Naber KG, Schmiemann G. Uncomplicated urinary tract infections. Dtsch Arztebl Int. 2011; 108 (24): 415-23. [DOI:10.3238/arztebl.2011.0415]
4. Falagas ME, Katoris AC, Kapaskelis AM, Karageorgopoulos DE. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections:a systematic review. Lancet Infect Dis. 2010; 10 (1): 43-50. [DOI:10.1016/S1473-3099(09)70325-1]
5. Brown ED, Vivas EI, Walsh CT, Kolter R. MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J Bacteriol. 1995; 177 (14): 4194-97. [DOI:10.1128/jb.177.14.4194-4197.1995]
6. Skarzynski T, Mistry A, Wonacott A, Hutchinson S.E, Kelly V.A, Duncan K. Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Structure. 1996; 4 (12): 1465-74. [DOI:10.1016/S0969-2126(96)00153-0]
7. Kim DH, Lees WJ, Kempsell K.E, Lane WS, Duncan K, Walsh CT. Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry. 1996; 35 (15): 4923-28. [DOI:10.1021/bi952937w]
8. Lemieux MJ, Huang Y, Wang DN. The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: A member of the major facilitator superfamily. Curr Opin Struct Biol. 2004; 14 (4): 405-12. [DOI:10.1016/j.sbi.2004.06.003]
9. Huang Y, Lemieux MJ, Song J, Auer M, Wang DN. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science. 2003; 301 (5633): 616-20. [DOI:10.1126/science.1087619]
10. Manuselis M. Textbook of Diagnostic Microbiology: 5th Edition. SAUNDERS, 2015.
11. Clinical and Laboratory Standards Institute: Performance standards for antimicrobial 324 susceptibility testing; Twenty-Fifth Informational Supplement M100-S25. 325. 2015: Clinical and Laboratory Standards Institute. Wayne, PA.
12. Takahata S, Ida T, Hiraishi T, Sakakibara S, Maebashi K, Terada S, et al.Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents. 2010; 35 (4): 333-7. [DOI:10.1016/j.ijantimicag.2009.11.011]
13. Karimian A, Momtaz H, Madani M. Detection of uropathogenic Escherichia coli virulence factors in patients with urinary tract infections in Iran. Afr J Microbiol Res. 2012; 39 (68): 6811-6. [DOI:10.5897/AJMR12.1462]
14. Asgharian A. Investigation of antibiotic susceptibility pattern of E.coli isolated from urinary culture related to patients in the west of the Mazandaran province, during from September 2010 to September 2011. Exp Anim Biol. 2014; 2 (3): 25-32.
15. Manouchehri M, Ahanjan M. Detection of CTX beta-lactamase Gene in Escherichia Coli Isolated from Urinary Tract Infection Using Polymerase ChainReaction. J Mazandaran Univ Med Sci. 2015; 25 (129): 36-45.
16. Doosti A, Daruoshi M, Barza R, Pasand M. Antibiotic resistance and distribution of beta-lactamase resistance genes in Escherichia coli strains isolated from urinary tract infection in women and children in Farsan town. J Shahrekord Univ Med Sci. 2016; 17 (6): 53-61.
17. Mohammadi M, Ghasemi E, Mokhayeri H, Pournia Y, Boroun H. Antimicrobial resistance patterns of E. coli detected from hospitalized urine culture samples. Asian J Biol Sci. 2010; 3 (4): 195-201. [DOI:10.3923/ajbs.2010.195.201]
18. Ghanbari F, Ghajavand H, Behshod P, Ghanbari N, Khademi F.Prevalence of Hospital-Acquired Infections in Hospitalized Patients in Different wards of Shariati Hospital of Isfahan, 2014. J Health. 2018; 8 (5): 511-17.
19. Sharma AR, Bhatta DR, Shrestha J, Banjara MR. Antimicrobial susceptibility pattern of Escherichia coli isolated from urinary tract infected patients attending Bir hospital. Nepal J Sci Technol. 2013;14 (1): 177-84. [DOI:10.3126/njst.v14i1.8938]
20. Ramazanzadeh R, Chitsaz M, Bahmani N. Prevalence and Antimicrobial Susceptibility of Extended-Spectrum Beta-Lactamase-Producing Bacteria in Intensive Care Units of Sanandaj General Hospitals (Kurdistan, Iran). Chemotherapy. 2009; 55: 287-92. [DOI:10.1159/000224656]
21. Mohammadimehr M, Feizabadi MM, Bahadori A. Antibiotic resistance pattern of Gram negative Bacilli caused nosocomial infections in ICUs in Khanevadeh and Golestan hospital in Tehran-2007. Ann Mil Health Sci Res. 2011; 8(4): 283-90.
22. Jodrá VM, Díaz-Agero Pérez C, Sainz de Los Terreros Soler L, Saa Requejo CM, Dacosta Ballesteros D. Quality control indicator working group. Results of the Spanish national nosocomial infection surveillance network (VICONOS) for surgery patients from January 1997 through December 2003. Am J Infect Control. 2006; 34 (3): 134-41. [DOI:10.1016/j.ajic.2005.10.004]
23. Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl Journal Med. 2010; 362 (19): 1804-13. [DOI:10.1056/NEJMra0904124]
24. Bartoloni A, Pallecchi L, Benedetti M, Fernandez C, Vallejos Y, Guzman E, et al. Multidrug resistant commensal Escherichia coli in children, Peru and Bolivia. Emerg Infect Dis. 2006; 12 (6): 907-13. [DOI:10.3201/eid1206.051258]
25. Shams S, Hashemi A, Esmkhani M, Kermani S, Shams E and Piccirillo A. Imipenem resistance in clinical Escherichia coli from Qom, Iran. BMC Res Notes. 2018; 11 (1): 314. [DOI:10.1186/s13104-018-3406-6]
26. Hosseini SMJ, Saberi M, Hosseini Doust SR, Yaribeigi H. Evaluation of antibiotic resistance in bacteria isolated from patients hospitalized in ImamKhomeini and burn hospitals in Ahvaz City, Iran. Qom Univ Med Sci J. 2014; 7 (6): 21-6.
27. Lorestani R, Akya A and Elahi A. The Mutations of Topoisomerase Genes and Their Effect on Resistance to Fluoroquinolones in Extended-Spectrumβ-Lactamase-Producing Escherichia coli. Jundishapur J Nat Pharm Prod .2018; 2: 1-6.
28. Lagace-Wiens PR, Nichol KA, Nicolle LE, Decorby MR, McCracken M, Alfa MJ, et al. ESBL genotypes in fluoroquinolone-resistant and fluoroquinolone-susceptible ESBL-producing Escherichia coli urinary isolates in Manitoba. Can J Infect Dis Med Microbiol. 2007; 18 (2): 133-7. [DOI:10.1155/2007/848194]
29. Alheib O, Al Kayali R, Abajy MY. Prevalence of plasmid-mediated quinolone resistance (PMQR) determinants among extended spectrum beta-lactamases (ESBL)-producing isolates of Escherichia coli and klebsiella pneumoniae in Aleppo, Syria. Arch Clin Infect Dis. 2015; 10 (3): 1-5. [DOI:10.5812/archcid.20631]
30. Gholipour A, Soleimani N, Shokri D, Mobasherizadeh S, Kardi M, Baradaran A. Phenotypic and Molecular Characterization of Extended-Spectrum beta-Lactamase Produced by Escherichia coli, and Klebsiella pneumoniae Isolates in an Educational Hospital. Jundishapur J Microbiol. 2014; 7 (10): e11758. [DOI:10.5812/jjm.11758]
31. Hussain M, Hasan F, Shah AA, Hameed A, Jung M, Rayamajhi N, et al. Prevalence of class A and AmpC β-lactamases in clinical Escherichia coli isolates from Pakistan Institute of Medical Science, Islamabad, Pakistan. Jpn J Infect Dis. 2011; 64 (3): 249-252.
32. Dadgari F, Ahmadi K, Mardani M, Ramezankhani M. Frequency and antibiotic resistance profile of bacteria isolated from the Intensive care unit and general ward at a general hospital in Tehran. Ann Mil Health Sci Res. 2007; 5 (1): 1155-64.
33. Rhomberg P.R, FritscheT.R, Sader H.S, Jones RN. Antimicrobial activity of cefepime tested against ceftazidime-resistant Gram-negative clinical strains from North American Hospitals: report from the SENTRY Antimicrobial Surveillance Program (1998-2004). Diag Microbiol Infect Dis. 2006; 56 (1): 57-62. [DOI:10.1016/j.diagmicrobio.2006.02.009]
34. Tseng S-P, Wang S-F, Kuo C-Y, Huang JW, Hung WC, Ke JM, et al. Characterization of fosfomycin resistant extended-spectrum ß-lactamase producing Escherichia coli isolates from human and pig in Taiwan. PLOS ONE. 2015; 10 (8): e0135864. [DOI:10.1371/journal.pone.0135864]
35. Yegane-Sefidan F, Ghotaslou R, Akhi MT, Sadeghi MR, Mohammadzadeh -Asl Y. Fosfomycin, interest in alternative drug for treatment of urinary tract infection created by multiple drug resistant and extended spectrum Beta-lactamase producing strains. Iran J Microbiol. 2016; 8 (4): 125-31.
36. Lee S-Y, Park Y-J, Yu JK, Jung S, Kim Y, Jeong SH, et al. Prevalence of acquired fosfomycin resistance among extended-spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Korea and IS26- composite transposon surrounding fosA3. J Antimicrobial chemotherapy. 2012; 67 (12): 2843-7. [DOI:10.1093/jac/dks319]
37. Usein CR, Damian M, Tatu-Chiţoiu D, Căpuşă C, Făgăraş R, Mircescu G. Comparison of genomic profiles of Escherichia coli isolates from urinary tract infections. Roum Arch Microbiol Immunol. 2003; 62 (3-4): 137-54.
38. Ejrnæs K. Bacterial characteristics of importance for recurrent urinary tract infections caused by Escherichia coli. Dan Med Bull. 2011; 58 (4): B4187.
39. Ohkoshi Y, Sato T, Suzuki Y, Yamamoto S, Tsukasa SH, et al. Mechanism of Reduced Susceptibility to Fosfomycin in Escherichia coli Clinical Isolates. BioMed Res Int. 2017; 1:1-8. [DOI:10.1155/2017/5470241]