:: Volume 6, Issue 2 And 3 (4-2018) ::
JoMMID 2018, 6(2 And 3): 57-61 Back to browse issues page
The Antibacterial and Immunomodulatory Effects of Carbohydrate Fractions of the Seaweed Gracilaria persica
Mohammad Khosravi , Darioush Gharibi , Farnoosh Kaviani , Mehrdad Mohammadidust
Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Iran
Abstract:   (618 Views)
Introduction: Red seaweeds are the source of polyanionic polymers that play a critical role in ionic, mechanical, and osmotic functions of the cells. The Gracilaria polysaccharides have numerous biological activities. This research aimed to compare the in vivo and in vitro effects of the various carbohydrate fractions of the seaweed Gracilariopsis persica. Methods: The crude polysaccharide of the G. persica seaweed was extracted using three methods, including soaking in water, hot water extraction, and acid extraction. On the optimal conditions, the seaweed polysaccharides were extracted using HCl 0.1 M 10% (w/v), and the crude carbohydrates were precipitated by ethanol. The extract was fractionated on diethylaminoethyl cellulose (DEAE-C) column using a NaCl gradient. The antimicrobial activity of each fraction was assessed by microdilution broth method against 6 bacteria species, including Staphylococcus aureus, Escherichia coli, Methicillin-resistant Staphylococcus aureus (MRSA), Salmonella typhimurium, Pseudomonas aeruginosa, and Aeromonas hydrophila. Moreover, the obtained fractions were orally administered (100 µg/day) for 7 days to 10 groups of 4 adult NMRY mice. The effects of various fractions were evaluated based on the bactericidal effect of the sera and some immune response indicators, including complement activity and humoral immune response against sheep red blood cells (SRBC). Results: Most of the fractions had direct antibacterial effects; however, oral administration of the fractions neither increased the antibacterial effect of sera nor triggered the complement activity. However, the fractions 1, 2, 5, and 6 significantly induced the humoral immune response against SRBC. Conclusion: The G. persica seaweed has direct antibacterial effects. However, unlike the humoral immune response induction, the carbohydrate fractions have no effects on innate immune responses.
Keywords: Gracilaria, Mice, Anti-bacterial Agents, Immunity
Full-Text [PDF 199 kb]   (102 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2018/06/24 | Accepted: 2018/11/13 | Published: 2019/03/18
1. 1. Garson J. Biosynthetic studies on Marine natural products. Nat Prod Rep. 1989; 6: 143-70. [DOI:10.1039/np9890600143]
2. Cian RE, Drago SR, de Medina FS, Martinez-Augustin O. Proteins and carbohydrates from red seaweeds: evidence for beneficial effects on gut function and microbiota. Mar Drugs. 2015; 13: 5358-83. [DOI:10.3390/md13085358]
3. Peixoto MJ, Salas-Leiton E, Pereira LF, Queiroz A, Magalhaes F, Pereira R, et al. Role of dietary seaweed supplementation on growth performance, digestive capacity and immune and stress responsiveness in European seabass (Dicentrarchuslabrax). Aquacult Rep. 2016; 3: 189-97. [DOI:10.1016/j.aqrep.2016.03.005]
4. Zerrifi SEA, El Khalloufi F, Oudra B, Vasconcelos V. Seaweed bioactive compounds against pathogens and microalgae: potential uses on pharmacology and harmful algae bloom control. Mar Drugs. 2018; 9: 16 (2). pii: E55.
5. Magnoni LJ, Martos-Sitcha JA, Queiroz A, Calduch-Giner JA, Goncalves JFM, Rocha CMR, Abreu HT, Schrama JW, Ozorio ROA, Perez-Sanchez J. Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced acute hypoxia tolerance in gilthead sea bream (Sparusaurata). Biol Open. 2017; 15; 6 (6): 897-908.
6. Shanmughapriya S, Manilal A, Sujith S, Selvin J, Kiran GS, Natarajaseenivasan K. Antimicrobial activity of seaweeds extracts against multi resistant pathogens. Ann Microbiol. 2008; 58: 535-41. [DOI:10.1007/BF03175554]
7. Mazumder S, Ghosal PK, Pujol CA, Carlucci M, Damonte EB, Ray B. Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilaria ceae, Rhodophyta). Inter J Biol Macromol. 2002; 31(1-3): 87-95. [DOI:10.1016/S0141-8130(02)00070-3]
8. Zovko A, VauknerGabric M, Specic K, Pohleven F, Jaklic D, Gunde-Cimerman N, et al. Antifungal and antibacterial activity of three-alkyl-pyridinium polymeric analogs of marine toxins. Int Biodeterior Biodegradation. 2012; 68: 71-7. [DOI:10.1016/j.ibiod.2011.10.014]
9. Ariffin SH, Yeen WW, Abidin IZ, Abdul Wahab RM, Ariffin ZZ, Senafi S. Cytotoxicity effect of degraded and undegraded kappa and iota carrageenan in human intestine and liver cell lines. BMC Complement Altern Med. 2014; 14: 508. [DOI:10.1186/1472-6882-14-508]
10. Thangam TS, Kathiresan K. Mosquito larvicidal activity of marine plant extracts with synthetic insecticides. Bot Mar. 1991; 34: 537-9. [DOI:10.1515/botm.1991.34.6.537]
11. Coura CO, Souza RB, Rodrigues JA, Vanderlei Ede S, de Araujo IW, Ribeiro NA, Frota AF, Ribeiro KA, Chaves HV, Pereira KM, da Cunha RM, Bezerra MM, Benevides NM. Mechanisms involved in the anti-inflammatory action of a poly sulfated fraction from Gracilaria cornea in rats. PLoS One. 2015: 25; 10 (3): e0119319.
12. Fernandez LE, Valiente OG, Mainardi V, Bello JL. Isolation and characterization of an antitumor active agar-type polysaccharide of Gracilaria dominguensis. Carbohydr Res. 1989; 190 (1): 77-83. [DOI:10.1016/0008-6215(89)84148-5]
13. Amorim RDD, Rodrigues JAG, Holanda ML, Quindere ALG, de Paula RCM, Melo VMM, Benevides NMB. Antimicrobial effect of a crude sulfated polysaccharide from the red seaweed Gracilaria ornata. Braz Arch Biol Technol. 2012; 55: 171-81. [DOI:10.1590/S1516-89132012000200001]
14. Chaves Lde S, Nicolau LA, Silva RO, Barros FC, Freitas AL, Aragao KS, et al. Anti-inflammatory and anti-nociceptive effects in mice of a sulfated polysaccharide fraction extracted from the marine red algae Gracilaria caudata. Immunopharmacol Immunotoxicol. 2013; 35 (1): 93-100. [DOI:10.3109/08923973.2012.707211]
15. Shiroma R, KoniShi T, Uechi S, TaKo M. Structural study of fucoidan from the brown seaweed Hizikia fusiformis. Food Sci Technol Res. 2008; 14 (2):176-82. [DOI:10.3136/fstr.14.176]
16. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem. 2005; 339: 69-72. [DOI:10.1016/j.ab.2004.12.001]
17. Kongkiattikajorn J, Ruenwongsa P. Isolation and characterization of vanadium bromoperoxidases from Thai red alga Gracilaria tenuistipitata. Science Asia. 2006; 321: 31-5. [DOI:10.2306/scienceasia1513-1874.2006.32(s1).031]
18. Bryan M, Finola L, Marie Ann C, Doris M. Clinical veterinary microbiology. 2nd ed. London, Mosby Elsevier, 2013.
19. Costabile M. Measuring the 50% haemolytic complement (CH50) activity of serum. J Vis Exp. 2010; 29:1923.
20. Hay FC, Westwood OMR. Practical Immunology, fourth ed. Black well Publishing Company, Malden. 2002; 103. [DOI:10.1002/9780470757475]
21. Brychcy E, Malik M,Drozdzewski E, KrolZ, Jarmoluk A. Antibacterial and physicochemical properties of carrageenan and gelatine hydrosols and hydrogels incorporated with acidic electrolysed water. Polymers. 2015; 7: 2638-49. [DOI:10.3390/polym7121534]
22. Fernandes-Negreiros MM, Araujo Machado RI, Bezerra FL, NunesMelo MC, Alves MGCF, Alves Filgueira LG, et al. Antibacterial, Antiproliferative, and Immunomodulatory Activity of Silver Nanoparticles Synthesized with Fucans from the Alga Dictyotamertensii. Nanomaterials (Basel). 2017; 25; 8 (1) pii: E6.
23. Kadam SU, O'Donnell CP, Rai DK, Hossain MB, Burgess CM, Walsh D, Tiwari BK. Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound assisted extraction, characterization and bioactivity. Mar Drugs. 2015; 13: 4270-80. [DOI:10.3390/md13074270]
24. Kolanjinathan K, Ganesh P, Govindarajan M. Antibacterial activity of ethanol extracts of seaweeds against fish bacterial pathogens. Eur Rev Med Pharmacol Sci. 2009; 13: 173-7.
25. Nagappan T, Vairappan CS. Nutritional and bioactive properties of three edible species of green algae, genus Caulerpa (Caulerpaceae). J Appl Phycol. 2014; 26: 1019-27. [DOI:10.1007/s10811-013-0147-8]
26. Kolanjinathan K, Saranraj P. Pharmacological efficacy of marine seaweed Gracilaria edulis against clinical pathogens. Glob J Pharma. 2014; 8 (2): 268-74
27. Manivannan K, Karthikai Devi G, Anantharaman P, Balasubramanian T. Antimicrobial potential of selected brown seaweeds from Vedalai coastal waters, Gulf of Mannar. Asian Pac J Trop Biomed. 2011; 1 (2): 114-20. [DOI:10.1016/S2221-1691(11)60007-5]
28. Horne G, Wilson FX. Therapeutic applications of iminosugars: current perspectives and futureopportunities. Prog med chem. 2011; 50: 135-76. [DOI:10.1016/B978-0-12-381290-2.00004-5]
29. Widowati I, Lubac D, Puspita M, Bourgougnon N. Antibacterial and antioxidant properties of the red alga Gracilaria verrucosa from the north coast of Java, Semarang, Indonesia. Int J Latest Res Sci Technol. 2014; 3 (3): 179-85.
30. Kurniawati I, Adam A. Antibacterial effect of Gracilaria verrucosa bioactive on fish pathogenic bacteria. Egyp J Aquatic Res. 2016; 42 (4): 405-10. [DOI:10.1016/j.ejar.2016.10.005]
31. Goni I, Gudiel-Urbano M, Bravo L, Saura-Calixto F. Dietary modulation of bacterial fermentative capacity by edible seaweeds in rats. J Agric Food Chem. 2001; 49; 2663-8. [DOI:10.1021/jf001389c]
32. Kumar AA, Meena VS, Chattopadhyay S, Panigrahi KCS. Novel immunomodulatory effect of Gracilaria verrucosa and Potamogeton pectinatus extracts on in vitro activation of T cells. Int J Life Sci Pharma Res. 2012: 2 (3); 233-9.
33. Chen YY, Sim SS, Chiew SL, Yeh ST, Liou CH, Chen JC. Dietary administration of a Gracilaria tenuistipitata extract produces protective immunity of white shrimp Litopenaeus vannamei in response to ammonia stress. Aquaculture. 2012; 370-371: 26-31. [DOI:10.1016/j.aquaculture.2012.09.031]
34. Thirunavukkarasu R, Pandiyan P, Balaraman D, Jayaraman I, Subaramaniyan K, George EGJ Enhancements of non-specific immune response in Mugilcephlus by using seaweed extract protection against Vibrio alginolyticus (BRTR07). J Coast Life Med. 2015; 3: 776-86. [DOI:10.12980/jclm.3.2015j5-46]
35. Hou WY, Chen JC. The immunostimulatory effect of hot-water extract of Gracilaria tenuistipitata on the white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish Shellfish Immunol. 2005; 19: 127e138.
36. Maningas MBB, Gonzalez PG, Obias MM, Pausanos RS, Siapno JLY, Alambra JR, Abquina EM. Immune response of Macrobrachiumrosen bergii immersed in hot-water extract of Gracilaria edulis. Phil Sci Tech. 2013; 6 (2): 147-52.
37. Walsh AM, Sweeney T, O'Shea CJ, Doyle DN, O'Doherty JV. Effect of dietarylaminarin and fucoidan on selected microbiota, intestinal morphology and immune status of the newly weaned pig. Br J Nutr. 2013; 110: 1630-8. [DOI:10.1017/S0007114513000834]
38. Kulshreshtha G, Rathgeber B, Stratton G, Thomas N, Evans F, Critchley A, Hafting J, Prithiviraj B. Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality, and gut microbiota of layer hens. Poult Sci. 2014; 93: 2991-3001. [DOI:10.3382/ps.2014-04200]
39. Saraiva M, O'Garra A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010; 10: 170-81. [DOI:10.1038/nri2711]
40. Cian RE, Lopez-Posadas R, Drago SR, Sanchez de Medina F, Martinez-Augustin O. A Porphyra columbina hydrolysate up regulates IL-10 production in rat macrophages and lymphocytes through an NF-kappa B, and p38 and JNK dependent mechanism. Food Chem. 2012; 134: 1982-90. [DOI:10.1016/j.foodchem.2012.03.134]
41. Yoshizawa Y, Ametani A, Tsunehiro J, Nomura K, Itoh M, Fukui F, Kaminogawa S. Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyra yezoensis): Structure-function relationships and improved solubility. Biosci Biotechnol Biochem. 1995; 59: 1933-7. [DOI:10.1271/bbb.59.1933]

XML     Print

Volume 6, Issue 2 And 3 (4-2018) Back to browse issues page