Volume 6, Issue 4 (10-2018)                   JoMMID 2018, 6(4): 91-98 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sami A J, Khalid M, jabeen S, Khalil S, Sajjad G, Arooj R. Nasal Colonization and Antimicrobial Susceptibility Pattern of Staphylococcus Species among Children in Lahore, Pakistan. JoMMID. 2018; 6 (4) :91-98
URL: http://jommid.pasteur.ac.ir/article-1-163-en.html
Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
Abstract:   (2364 Views)
Introduction: Staphylococcus is a genus of pathogenic bacteria, which asymptomatically colonizes the upper respiratory tract of the human. The incidence of invasive Staphylococcal infections and the disease burden are high among children in South Asia, including Pakistan. This study aims to determine the nasal colonization and antimicrobial susceptibility pattern of Staphylococcus species isolated from preschool children in Lahore, Pakistan. Methods: A community-based study was conducted in two camps named Shah Di Khui and Jeevan Haana in Lahore city. A total of 100 nasal samples, were collected from preschool children from lower-middle-class families during January to March 2018. Species identification was performed using the coagulase test, catalase test, and Gram staining. Also, a 370 bp fragment of the tuf gene was targetted using specific primers for the genus Staphylococcus. Antibiotic resistance pattern of the isolates was defined by an antibiotic susceptibility test using a series of antibiotic discs. Results: The results of this study indicated the presence of Staphylococcus species, mainly Staphylococcus aureus in more than 85% of the children. PCR amplification of tuf gene confirmed the identity of the S. aureus isolates from the nasal cultures. Many showed resistance resistant to more than two broad-spectrum antibiotics. Conclusion: The prevalence of nasal colonization of S. aureus was more than 85% among preschool children. Most of the isolates were resistant to β-lactam antibiotics.
Full-Text [PDF 639 kb]   (283 Downloads)    
Type of Study: Original article |
Received: 2018/05/28 | Accepted: 2018/11/5 | Published: 2019/07/3

1. Schito GC. The importance of the development of antibiotic resistance in Staphylococcus aureus. Clin Microbiol Inf. 2006; 12: 3-8. [DOI:10.1111/j.1469-0691.2006.01343.x]
2. Mika M, Mack I, Korten I, Qi W, Aebi S, Frey U, et al. Dynamics of the nasal microbiota in infancy: a prospective cohort study. J Allergy Clin Immunol. 2015; 135 (4): 905-12. [DOI:10.1016/j.jaci.2014.12.1909]
3. Rasmussen TT, Kirkeby LP, Poulsen K, Reinholdt J, Kilian M. Resident aerobic microbiota of the adult human nasal cavity. Apmis. 2000; 108 (10): 663-75. [DOI:10.1034/j.1600-0463.2000.d01-13.x]
4. Casadevall A, Pirofski LA. What is a host? Incorporating the Microbiota into the 'Damage-Response Framework'. Infect immunity. 2014; IAI-02627-14.
5. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015; 28 (3): 603-61. [DOI:10.1128/CMR.00134-14]
6. Verhoeven PO, Gagnaire J, Botelho-Nevers E, Grattard F, Carricajo A, Lucht F, et al. Detection and clinical relevance of Staphylococcus aureus nasal carriage: an update. Exp rev Anti-infective Ther. 2015; 12 (1): 75-89. [DOI:10.1586/14787210.2014.859985]
7. Stryjewski ME, Corey GR. Methicillin-resistant Staphylococcus aureus: an evolving pathogen. Clin Infec Dis. 2014; 58 (1): S10-S19. [DOI:10.1093/cid/cit613]
8. Bassetti ME. Nicco E, Mikulska M. Why is community-associated MRSA spreading across the world and how will it change clinical practice?" Int J Antimicrob Agents. 2009; 34: S15-S19. [DOI:10.1016/S0924-8579(09)70544-8]
9. Von Eiff CK, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. New England J Med. 2001; 344 (1): 11-6. [DOI:10.1056/NEJM200101043440102]
10. Lindsay JA, Moore CE, Day NP, Peacock SJ, Witney AA, Stabler RA, et al. Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J bacteriolo. 2006; 188 (2): 669-76. [DOI:10.1128/JB.188.2.669-676.2006]
11. Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. The Journal of clinical investigation. 2003; 111 (9): 1265-73. [DOI:10.1172/JCI18535]
12. Gurusamy KS, Koti R, Toon CD, Wilson P, Davidson BR. Antibiotic therapy for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in surgical wounds. Cochrane Database Syst Rev. 2013; (8): CD009726-CD009726. [DOI:10.1002/14651858.CD009726.pub2]
13. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. Jama. 2007; 298 (15): 1763-71. [DOI:10.1001/jama.298.15.1763]
14. Brown DF, Edwards DI, Hawkey PM, Morrison D, Ridgway GL, Towner KJ, et al. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). J Antimicrob Chemother. 2005; 56 (6): 1000-18. [DOI:10.1093/jac/dki372]
15. Martineau F, Picard FJ, Ke D, Paradis S, Roy PH, Ouellette M, et al. Development of a PCR assay for identification of staphylococci at genus and species levels. J Clin Microbiol. 2001; 39 (7): 2541-7. [DOI:10.1128/JCM.39.7.2541-2547.2001]
16. Jorgensen JH, Turnidge JD. Susceptibility test methods: dilution and disk diffusion methods. Manual of Clinical Microbiology. 11th Ed, American Society of Microbiology. 2015; 1253-73. [DOI:10.1128/9781555817381.ch71]
17. Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol. 2009.
18. Bauer AW, Perry DM, Kirby WM. Single-disk antibiotic-sensitivity testing of staphylococci: An analysis of technique and results. AMA Archives Interl Med. 1959; 104 (2): 208-16. [DOI:10.1001/archinte.1959.00270080034004]
19. Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. The role of nasal carriage in Staphylococcus aureus infections. The Lancet Infect Dis. 2005; 5 (12): 751-62. [DOI:10.1016/S1473-3099(05)70295-4]
20. Jourdain S, Smeesters PR, Denis O, Dramaix M, Sputael V, Malaviolle X, et al. Differences in nasopharyngeal bacterial carriage in preschool children from different socio‐economic origins. Clin Microbiol Infect. 2011; 17 (6): 907-14. [DOI:10.1111/j.1469-0691.2010.03410.x]
21. Masuda K, Masuda R, Nishi JI, Tokuda K, Yoshinaga M, Miyata K. Incidences of nasopharyngeal colonization of respiratory bacterial pathogens in Japanese children attending day‐care centers. Pediatr Int. 2002; 44 (4): 376-80. [DOI:10.1046/j.1442-200X.2002.01587.x]
22. Pathak A, Marothi Y, Iyer RV, Singh B, Sharma M, Eriksson B, et al. Nasal carriage and antimicrobial susceptibility of Staphylococcus aureus in healthy preschool children in Ujjain, India. BMC pediatr. 2010. 10 (1): 100. [DOI:10.1186/1471-2431-10-100]
23. Eibach D, Nagel M, Hogan B, Azuure C, Krumkamp R, Dekker D, et al. Nasal carriage of Staphylococcus aureus among children in the Ashanti Region of Ghana. PloS one. 2017; 12 (1): e0170320. [DOI:10.1371/journal.pone.0170320]
24. Lamaro-Cardoso J, De Lencastre H, Kipnis A, Pimenta FC, Oliveira LS, Oliveira RM, et al. Molecular epidemiology and risk factors for nasal carriage of Staphylococcus aureus and methicillin-resistant S. aureus in infants attending day care centers in Brazil. J Clin Microbiol. 2009; 47 (12): 3991-7. [DOI:10.1128/JCM.01322-09]

Add your comments about this article : Your username or Email:

Send email to the article author

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.