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Innate Immunity Plays a Key Role in Leishmania Infection: Implications
for Vaccine Design
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Neutrophils are part of the first line of immune response and are essential for resistance against a vatiety of pathogens. They
professionally mediate direct killing of pathogens, tecruit other phagocytes by specific chemokines, produce cytokines and
interact with different immune cells to shape the adaptive response. Leishmania as an obligatory intracellular parasite has
evolved to benefit this early innate response to find its way into macrophages, the final host cells. Therefore it is important to
reconsider the role of neutrophils for further improvement of the current vaccine status. | Med Microbiol Infec Dis, 2016, 4 (34):

39-44.
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INTRODUCTION

Leishmaniasis is a vector-borne disease mainly
affecting Asia, Africa, South America, and the
Mediterranean basin. The unicellular parasite from
Leishmania genus inhabits some natural reservoirs and is
transmitted to human by infected sandfly vectors. The result
of infection in human as host is multifactorial and ranges
from self-healing local cutaneous to disfiguring
mucocutaneous or lethal visceral leishmaniasis. Sandfly
saliva-derived proteins and microbiota [1], parasite species
and associated viruses and most importantly competency of
host immune system together with host microbiome [2], are
factors that determine the infection outcome. The resolution,
in general, is Thl cellular immune response mediated, and
Th2 response promotes disease establishment. There are
several pieces of evidence indicating that innate immune
response and in particular neutrophils as sentinels play a
critical role in Th1/Th2 polarization early after infection.
Therefore it is evident that for efficient wvaccine
development, the innate immune response must be
considered together with adaptive immunity.

Neutrophils are sentinels of the innate immune
response against invaders

Polymorphonuclear  leukocytes also  known as
neutrophils, are the most abundant circulating human blood
leukocytes (50-70%) that accumulate in the inflammation
site very rapidly before any other cell type. They originate
from the same precursors as mononuclear phagocytes in
bone marrow in a constitutive manner. Neutrophils are
short-lived cells that are programmed to die by apoptosis
within a few hours. This is necessary to regulate their
functions tightly. These cells are well equipped to fight
against bacterial and fungal infections and are responsible
for wound healing after sterilization of the site. They harbor
diverse types of granules with exclusive roles within the
cytoplasm [3]. Azurophilic or primary granules contain
Myeloperoxidase and Serin proteases, and specific or
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secondary granules contain mostly antimicrobial peptides
as LL-37, defencins, lactoferrin and pro-cathelicidin. These
granules are especially involved in the direct killing of
invaders. The rest of granules including tertiary granules
which are filled with matrix metalloproteinase 9 and
secretory vesicles containing receptors required for cell
adhesion (like integrins) are involved in digestion of
extracellular matrix and extravasation of neutrophils at the
inflamed site respectively [4]. Evidently, inappropriate
activation of neutrophils may lead to tremendous tissue
damage during an autoimmune or uncontrolled
inflammatory response [5].

Early after infection and/or tissue damage, pattern
recognition receptors (PRRs) on tissue resident
macrophages, fibroblasts, keratinocytes and endothelial
cells effectively sense the pathogen-associated molecular
patterns (PAMPSs) and/or the danger-associated molecular
patterns (DAMPs) and produce neutrophil-attracting
chemokines which are IL-8 in human and CXCL1 and
CXCL2 in mice [6-9]. These chemokines signal via
CXCR2 to activate neutrophils and promote their adhesion
to the endothelial cells. Activated neutrophils firmly adhere
to the endothelium and extravasate at inflamed site.
Neutrophils express CD11b (complement receptor for
C3Db/iC3b components) also immunoglobulin Fc-y receptors
for phagocytosis of opsonized microbes.
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After phagocytosis, microbes are killed by direct killing
mechanisms. Reactive oxygen species (ROS) produced by
membrane-associated NADPH oxidase [10], the fusion of
primary and secondary granules including proteases and
antimicrobials with  phagosomes [11] and even
degranulation into the periphery, directly kills the pathogen.
Furthermore different signals such as ROS mediate nuclear
chromatin release from these cells together with some
granule contents as LL-37, defencins and neutrophil
elastase during NETosis (Neutrophil Extracellular Traps)
[12, 13]. Primarily, NETs entrap and block further
dissemination of the pathogens in addition to killing some
pathogens and facilitating phagocytosis by other
phagocytes [4, 14]. Neutrophils can play an additional role
which is orchestrating the adaptive immunity [15].
Neutrophil-derived/induced chemoattractants  recruit
immature dendritic cells (iDCs) to the inflammation site
[16]. Human and mouse studies suggest that neutrophils
directly interact with dendritic cells by Mac-1/DC-SIGN
engagement to activate iDCs [17]. Mouse neutrophils can
transport peripheral antigens to draining lymph nodes to
prime antigen-specific Thl, Th17 and CD8" T cells [18-20].
IL-18 produced by neutrophils jointly with IL-12 produced
by dendritic cells also activates natural killer cells. Human
neutrophils release IFN-y for macrophage activation and T
cell differentiation [21].

The programmed cell death in neutrophils could be
delayed by different signals such as pro-inflammatory
cytokines and pathogens [22]. Macrophage recruitment by
neutrophil-secreted chemokine including antimicrobial
peptides and MIP-1 and reciprocal interaction between
these two cells induce apoptosis even after days of survival
[23, 24]. Apoptotic neutrophils are removed by
macrophages and dendritic cells (efferocytosis) to avoid
further tissue damage by hazardous components of
neutrophils [25]. Eventually, neutrophil levels return to
their baselines.

Leishmania parasites have evolved to advantage
early innate response of neutrophils

Leishmania parasites are obligatory intracellular
pathogens transmitted via sandfly bite and do not survive
out of the host cells after deposition in the skin. Therefore
upon transmission, the parasite benefits a massive
recruitment of neutrophils to sandfly bite site instead of
stopping neutrophil accumulation. Tissue injury caused by
sandfly bite is sufficient to recruit neutrophils. However,
the sandfly saliva [26] together with parasite factors
including promastigote secretory gel (PSG) [27] and
Leishmania chemotactic factor (LCF) [28] in the inoculum,
augment neutrophil recruitment within first 30-45 min post
infection.  Although many others had previously
demonstrated the early accumulation of neutrophils, Peters
et al., were the first group to image the massive and
sustained recruitment of neutrophils in vivo (detectable up
to 8 days) after sandfly deposition of the parasite in the ear
dermis by using 2Photon Intravital Microscopy [29].
According to their findings, the neutrophils uptake 80-90%
of inoculated parasites compared to 10-20% engulfed by
macrophages [30]. LPG and GP63 surface molecules are
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well-known targets for C3b-component of alternative
complement pathway. Surface receptors for complement
components enable neutrophils to efficiently uptake
opsonized parasites [31]. Meanwhile, LPG [32] and GP63
[33] molecules block further deposition of membrane attack
complex (MAC) components of complement pathways on
C3b and resist direct complement killing this way.

Leishmania parasites have evolved to survive in the
hostile environment inside neutrophils by different evading
mechanisms [34]. Some parasites like Leishmania major
and Leishmania donovani can inhibit toxic oxygen
metabolite production by acid phosphatases [35, 36].
Laskey et al. have recently proposed that L. major parasites
can survive within human neutrophils because ingestion of
uninfected apoptotic neutrophils by infected neutrophils
inhibits ROS production [37]. This is entirely reasonable
since high numbers of neutrophils are present at the
infection site. Even uptake of apoptotic promastigotes in the
inoculum can suppress further ROS production [38].
Leishmania parasites are also able to block fusion of the
neutrophil granules with phagosome which is partly
explained by surface LPG [39]. Many different species of
Leishmania also induce NETosis such as L. major and
Leishmania amazonensis [40], L. donovani, Leishmania
infantum and Leishmania mexicana. However, several
species resist NET killing by structural hindrance of surface
LPG like L. donovani [41], by parasite-derived 3'-
nucleotidase/nuclease activity like L. infantum [42] and by
an unknown mechanism like L. mexicana [43]. Furthermore,
a recent work by Chagas et al. has identified a novel NET-
destroying endonuclease (Lundep) in Lutzomyia longipalpis
(L. longipalpis) saliva which promotes survival against the
leishmanicidal activity of NET [44].

Leishmania parasites delay the apoptosis of neutrophils
in vitro [45, 46]; however, controversial results have been
obtained by ex vivo experiments: once engulfed, surviving
parasites accelerate neutrophil apoptosis [47]. Neutrophil
apoptosis is further facilitated by sandfly saliva components
[48]. Sandfly components also augment macrophage
chemoattractant production by neutrophils [48]. Recruited
macrophages, first encounter apoptotic neutrophils [22].
Leishmania parasites then translocate into macrophages by
different mechanisms. In “Trojan Horse” model
macrophages directly engulf apoptotic bodies of infected
neutrophils [49]. In “Trojan Rabbit” model free parasites
are ingested along with neutrophil apoptotic bodies [50].
Parasites can even be released from neutrophils to enter
macrophages this time even more infectious than other
pathways [22] and evade macrophage killing mechanisms.
Evidently, apoptotic body ingestion by both macrophages
and dendritic cells [51], known as “silent entry,” has an
adverse effect on activation of these cells and compromises
appropriate adaptive immune response polarization by
decreasing 1L-12 and increasing TGF-£ production [52].
Eventually, the parasite propagates in macrophages as host,
however depending on some host factors including
Neutrophil Elastase (NE), Toll-Like Receptor-4 (TLR-4) on
macrophages and Tumor Necrosis Factor (TNF), the fate of
the disease could be determined. Thus massive neutrophil
infiltration induced by sandfly saliva is exploited by

2016 Vol. 4 No. 3-4


http://jommid.pasteur.ac.ir/article-1-128-en.html

[ Downloaded from jommid.pasteur.ac.ir on 2025-11-03 ]

Seyed et al.

Leishmania to impair the early reaction of macrophages and
dendritic cells and to delay cellular immune responses [22].
This might be the reason why vaccines against Leishmania
fail to protect against natural infection [30].

A robust effector response is crucial to control early
inflammatory response after parasite deposition by
sandfly

Employing 2Photon Intravital Microscopy to record the
early in vivo events, massive recruitment of neutrophils to
mouse ear epidermis within a few minutes after an
intradermal challenge by L. major infected sand fly was
confirmed [29, 53]. Interestingly neutrophil depletion
before needle and sandfly challenge dramatically reduces
the parasite number per ear [54]. These observations were
then used to explain why leishmanization remains the most
efficient vaccine formulation so far. After leishmanization,
healed mice are effectively protected against secondary
sandfly challenge. Instead, neither ALM-CpG [53] nor
polyprotein-GLA-SE  vaccines (KSAC-GLA-SE or
LeishF110-GLA-SE) [55] match the potency of
leishmanization in protecting against sandfly challenge
while protective against needle challenge. As investigated
by Peters et al., the key differences between healed and
ALM or polyprotein vaccinated mice are attributable first to
a robust immune response early after sandfly challenge
mediated by CD3"CD4" T cells and then to a higher IFN-
v/IL-17 ratio leading to low numbers of neutrophils 4 weeks
post infection. Of particular note, neutrophil depletion after
sandfly challenge in ALM-CpG vaccinated mice enhances
the protective effect, comparable to healed mice, by
increasing IFN-y producing CD4" T cells [53]. This means
that only a rapid and robust immune response soon after a
sandfly infective bite can control the local
immunomodulatory conditions at early time points post-
infection when neutrophils have accumulated at the site.

Further investigation revealed that parasite persistence
after healing is the key to leishmanization success.
Persistent parasites after healing, maintain an effector and
not memory population of CD4" T cells that produce IFN-y
and are characterized by high levels of Ly6C and t-bet
molecules. These cells are introduced as the primary
correlates of the immunity conferred by leishmanization
since they infiltrate the bite site very rapidly after sandfly
probing (opposite of a memory profile). They are short-
lived in the absence of antigen and disappear as soon as the
antigen level drops [56] (a common characteristic of non-
living vaccines like ALM or polyproteins). They potentially
modulate the inflammatory milieu in favor of Thl response
early after infection.

Immunity to sandfly saliva plays a major role in
disease control

Together with the parasite, sand flies co-inject salivary
components that facilitate getting a blood meal [57].
Further investigation demonstrated that co-inoculation of
sand fly saliva and Leishmania exacerbates the disease and
increases parasite load [58-61]. However pre-exposure to
salivary gland homogenates (SGH) [59], bites of uninfected
sand flies [62] or even vaccination with specific salivary
molecules, either alone [26, 63-67] or in combination with
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parasite immunogenic proteins [68, 69], potentially protects
against infectious challenge. Also, in endemic areas, anti-
saliva  immunity  coincides  with  delayed-type
hypersensitivity (DTH) response against Leishmania
antigens [70-72]. Altogether these data raised the concept
that immune response against sandfly saliva confers a long
term protection against Leishmania. In 2007, a group of
healthy volunteers was experimentally exposed to
uninfected (L. longipalpis) bites and high levels of 1gG1,
IgG4 and IFN-y were detected. One year after exposure,
recall responses efficiently produced IFN-y [73].
Furthermore, Valenzuela et al. demonstrated that
immunization with DNA encoding Phlebotomus papatasi
(P. papatasi) SP15 (PpSP15) protein protects against
infectious challenge three-month post-immunization [26].

There are two alternatives to explain this fact. First,
immunization with saliva neutralizes exacerbating factors.
These could be mainly chemoattractants that recruit
neutrophils to the sandfly probing site. Previously,
components of L. longipalpis [74] and L. intermedia [75]
saliva were demonstrated to induce a rapid recruitment of
neutrophils in Balb/c model. Recently, C57BL/6 neutrophil
migration towards salivary glands of the P. duboscqi and L.
longipalpis in vitro was illustrated which was compromised
by Proteinase K treatment indicating the protein nature of
recruiting factors [76]. In this respect, pre-treatment with
SGH from L. longipalpis [77] or P. papatasi [78] reduced
neutrophil  recruitment by  different mechanisms.
Alternatively, cellular anti-saliva immunity provides a DTH
environment that controls early inflammatory events at
infection site [79]. Oliveira et al. have correlated this with
early recruitment of Iymphocytes and IFN-y/IL-12
production within 2 hours after the bite [80]. Biopsies taken
at the site of a DTH response 48 hours after experimental
bites were dominated by lymphocytes, macrophages and
high levels of IFN-y indicative of a Thl response [81]. In
another word, Thl response against sandfly saliva promotes
a Thl response against Leishmania.
vaccine

Concluding remarks:

development

As explained so far, Leishmania parasites are able to
benefit neutrophils and bypass their hostile environment to
establish a progressive disease. In this respect, sandfly
saliva plays a crucial role in the massive recruitment of
neutrophils, apoptosis induction, and NET disruption to
support parasites’ moving to their final destination in
macrophages. The silent entry shuts down all
leishmanicidal activities of macrophages and dendritic cells
and eventually suppresses Th1l deviation. This could be one
possible explanation why vaccine formulations with
promising results in experimental needle challenge models
fail in the field to protect against sandfly challenge. This
point has drawn full attraction to re-think about the role of
neutrophils in vaccine design against leishmaniasis. On one
side, the humoral immune response could be raised against
defined neutrophil chemoattractants in saliva to restrict
massive recruitment of neutrophils. On the other side,
multiple proteins like PpSP15 in P. papatasi or its
counterparts in other sandfly species, used alone or in

implications for
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combination with immunogenic proteins of parasite, could
be advantaged in DNA or dendritic cell context (vaccine
modalities with more sustained antigen production and
presentation) to promote long-lasting cellular immune
response that rapidly colonize at the sandfly bite site. This
reaction could confer protection by modulating the
environment for Thl deviation and parasite Kkilling
following sandfly challenge. Then there is an urgent need to
further characterize immunogenic proteins in different
sandfly and different Leishmania species in each endemic
country and also define the saliva chemotactic factors of
each sandfly species. These might promisingly lead us one
step forward in improving vaccines against leishmaniasis
although we still need to fully understand the role of the
innate immune system in Leishmania infection and the
function of other innate cells in the skin including y3-T
cells and innate lymphoid Cells (ILCs) and even the skin
related microbiota. We should keep in mind that the
parasite species and the experimental models used are
important factors to be considered in every vaccine concept.
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