Detection of *Borrelia* DNA in *Ornithodoros tholozani* Ticks and Their Eggs

Afsaneh Aghaie1, Behnaz Ghazinezhad2, *Saied Reza Naddaf*2

1Department of Microbiology, Islamic Azad University of Lahijan, Lahijan, Iran; 2Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.

Received Dec 01, 2015; accepted Dec 28, 2015

INTRODUCTION

The genus *Borrelia* comprises 37 species including the causative agents for Lyme disease and tick-borne relapsing fever (TBRF), the two different types of borreliosis transmitted by hard ticks (Family: Ixodidae) and soft ticks (Family: Argasidae), respectively. Louse adapted *Borrelia recurrentis* is the only exception which is transmitted by human body lice [1]. TBRF is an endemic disease in Iran, with more than 140 annual cases throughout the country [2].

In the western, northwestern, and foothill regions of the Alborz Mountains, the Argasid soft tick *Ornithodoros tholozani* is commonplace in animal shelters and adjacent human dwellings and accounts for most of TBRF cases attributed to *Borrelia persica* infection [2-4]. However, in central and western Iran *O. tholozani* coexist with *Borrelia microti*-infected *O. erraticus* ticks [2, 5, 6]. Two other *Borrelia* species, *Borrelia latashyvii* and *Borrelia baltazardi*, were also described in Iran. *B. latashyvii* was isolated from *Ornithodoros tartakowskyi* ticks in northeast [7] and the *B. baltazardi* from a relapsing fever patient with thrombocytopenic purpura in Ardebil, an endemic area for TBRF *B. persica* in northwestern of the country [8]. *B. baltazardi* was discriminated from *B. persica* based on electron microscopy findings, i.e., the number of flagellates, and experimental pathogenicity. The spirochete *B. baltazardi* was isolated only once and attempts to maintain it in laboratory animals failed [8].

Spirochetes of *Borrelia* can be visualized directly in infected ticks by dark-field microscopy. Inoculation of in phosphate buffered saline (PBS) suspension of ground Argasid soft ticks to susceptible animals or allowing the ticks to feed on the same species followed by microscopic examination of the animals’ blood have also been practiced. With the advent of molecular methods and introduction of various gene markers, *Borrelia persica* DNA was detected in *Ornithodoros tholozani* ticks by using several gene markers, but the data on transovarial transmission of *Borrelia* in this tick by these methods is very scarce.

MATERIAL AND METHODS

Sample collection. Ticks were collected from crevices and cracks of animal dwellings from a rural area in Ardebil Province.

Correspondence: Saied Reza Naddaf

Department of Parasitology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran, 1316943551.

Email: snaddaf_2001@yahoo.com

Tel/Fax: +98 (21) 66968855

Keywords: *Borrelia persica*, *Ornithodoros tholozani*, Transovarial transmission, PCR, Iran.
Among collected samples, 17 *O. tholozani* ticks were identified based on morphological features. The ticks included 9 males and 8 females. The samples were kept in jars in an incubator at 30°C and 70% humidity for approximately two months; over this period, the engorged females laid eggs and some eggs hatched into larva. Six unfed ticks were allowed to feed on two guinea pigs and after five days the animals’ blood were examined daily for presence of spirochetes by dark-field microscopy and microscopic examination of Giemsa-stained thin and thick smears for 14 days. DNA extraction was performed from 17 ticks, 4 larvae and 2 pools of 30 eggs by phenol/chloroform extraction method followed by ethanol precipitation as described by others [10].

PCR amplification. Detection of *Borrelia* DNA in extracted samples was performed by two PCR methods targeting highly recitative fragments of *rrs* genes using the primers and reagents described by others [11, 12]. The first amplification was performed with primers Rec4 (5’-ATG CTA GAA ACT GCA TGA-3’) and Rec9 (5’-TCG TCT GAG TCC CAT CT-3’) targeting a 523 bp fragment. For PCR negative samples, a nested PCR was applied with primers Fd3 (5’-AGA GTT TGA TCC TGG CT-3’) and 595R (5’-CTT GCA TAT CCG CCT ACT CA-3’) at the first stage and primers Fd4 (5’-GCC TTA GAA CTA ACG CTG GCA-3’) and 500R (5’-CTG CTG GCA CGT AAT TAG CC-3’) at second stage. All the amplifications were performed in 25 µl reaction mixtures containing 20 pmol of each primer, 2.5 mM MgCl₂, 10 mM Tris-HCl, 50 mM KCl, 200 µM of dNTPs, 1 U of *Taq* polymerase, and 3 µl of DNA (expect for second stage of the nested-PCR in which 3 µl of 1:10 dilution of the amplicon of the first stage was used as template). All amplifications included negative controls containing all reagents expect DNA template, and positive controls containing *B. persica* DNA as template. The PCR products were run on 2% agarose gel and visualized under UV light.

RESULTS

All the guinea pig blood samples were negative for spirochetes by dark-field microscopy and microscopic examination of Giemsa-stained smears. Out of 17 adult ticks, 2 males and 5 females were positive for *Borrelia* DNA. None of the larvae was positive, but one batches of eggs yielded the expected 520 bp amplicon by the PCR targeting 16 S rRNA (Figures 1 and 2).

DISCUSSION

The association of *B. persica*, the agent for most relapsing fever cases in Iran, with *O. tholozani* ticks has been known since early 20th century [13]. Presence of the spirochetes in *O. tholozani* ticks has been demonstrated by allowing ticks to feed on susceptible animals like guinea pigs or small white laboratory mice. Inoculation of in-PBS suspension of ground ticks to the same animals followed by microscopic examination of animals’ blood for spirochetes has also been practiced [2]. The advent of molecular methods allowed identification and characterization of *Borrelia* spp. in infected ticks. Lyme *Borrelia* DNA have been frequently detected in engorged female *Ixodes persulcatus* ticks and their eggs by PCR methodology targeting *rrs* gene [14, 15]. *B. persica* was detected in about 98% of laboratory-infected *O. tholozani* ticks by the same gene marker [9]. In a study on soft ticks collected from Pakistan County in Qazvin Province, west Iran, *B. persica* DNA and unspecified *Borrelia* DNA were detected in *O. tholozani* and in *Orithodoros. lahorensis* ticks, respectively [3]. In this study we could detect *Borrelial* DNA in adult ticks and in their eggs as well. This is an indication for transovarial transmission of the *Borrelia*.
spirochetes, an important mechanism for maintaining and distributing tick-borne pathogens in nature; ticks hatch out of the egg already infected, and don't require a reservoir host meal during larval stage. The flaw with this assay was lack of sequencing amplicons. There were chances that apart from B. persica, other borrelial species could be present in O. tholozani ticks; the importance of this issue is more magnified when we consider the fact that B. baltazardi was isolated from a patient in an area where O. tholozani ticks were prevalent and B. persica relapsing fever was endemic [8]. Further studies with much more tick samples from relapsing fever endemic areas in Iran and other countries are required to elucidate the role of O. tholozani ticks as potential vector and reservoir of other Borrelia species.

ACKNOWLEDGEMENT
This work was part of a research project on relapsing fever funded by the Pasteur Institute of Iran (grant no. 500). We thank Dr. Norair Piazak for identification of ticks.

CONFLICT OF INTEREST
The authors declare that there are no conflicts of interest associated with this manuscript.

REFERENCES
13. Karimi U. Relapsing fever and its epidemiology. Pasteur Institute of Iran (PII); 1981 [In Persian].

J Med Microbiol Infec Dis 120 2014 Vol. 2 No. 3