Detection of DNA Gyrase Mutation and Multidrug Efflux Pumps Hyperactivity in Ciprofloxacin Resistant Clinical Isolates of *Pseudomonas aeruginosa*

Abolghasem Tohidpour¹,², Shahin Najar Peerayeh¹, Sarah Najafi³

¹Department of Medical Bacteriology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran; ²Current address: Department of Microbiology, School of Medicine, Nursing and Health Sciences, Monash University, VIC, Australia; ³Pharmaceutical Incubator Centers, Tehran University of Medical Sciences, Tehran, Iran.

INTRODUCTION

Pseudomonas aeruginosa is a serious nosocomial bacterial pathogen, mainly due to the high level of antibiotic resistance, which is the result of several mechanisms such as outer membrane low permeability [1], acquisition of antibiotic modifying enzymes [2, 3], and overexpression of multidrug efflux pumps [4, 5]. Fluoroquinolones have been extensively used against various infections both in human and veterinary cases [6, 7]. Ciprofloxacin is historically known as the most effective fluoroquinolone antibiotic against *P. aeruginosa* infections [8, 9]. The main resistance mechanisms to fluoroquinolones include multidrug efflux pumps and drug target modifications. Mutations in type II topoisomerase encoding genes, including DNA gyrase (*gyrA*, *gyrB*) and DNA topoisomerase IV (*parC*, *parE*) in so-called quinolone resistance determining region (QRDR) [10], play a significant role in conferring fluoroquinolone resistance in clinical isolates of *P. aeruginosa* [11-13].
MexAB-OprM, MexCD-OprJ and MexXY-OprM are among the well described multidrug efflux pumps of *P. aeruginosa*. MexAB-OprM is constitutively expressed in wild-type strains and overproduced in *nalB* and *nalC* mutants conferring resistance to fluoroquinolones, tetracycline and beta-lactams [14, 15]. The overexpression of the substrate-inducible pump, MexXY-OprM, results in resistance to some drugs such as fluoroquinolones, tetracycline, aminoglycosides and erythromycin [16, 17]. MexCD-OprJ pump has no expression under standard conditions, while expression occurs in *nfxB* mutant that is resistant to fluoroquinolones, tetracycline, chloramphenicol and trimethoprim [18, 19]. So far, there has been no valid evidence of genotypic analysis of fluoroquinolone-mediated efflux pump resistance in *P. aeruginosa* from Iranian medical settings. The aim of this study was to investigate the two main fluoroquinolone resistance mechanisms through transcriptional analysis of the three efflux pumps MexAB-OprM, MexCD-OprJ and MexXY-OprM and sequencing analysis of type II topoisomerase QRDR, in order to elucidate a possible correlation between the emergence of multidrug efflux pumps hyperactivity, topoisomerase mutations and resistance to fluoroquinolones in clinical isolates of *P. aeruginosa* from Iran.

MATERIALS AND METHODS

Bacterial strains, plasmid and growth conditions. A total number of 133 *P. aeruginosa* isolates were collected from patients in burn units of 3 major hospitals in Tehran, Iran. The antimicrobial susceptibility of these isolates was tested against 10 different antibiotics. Some 45 (35%) ciprofloxacin-resistant (CipR) strains were examined for phenotypic indication of efflux pumps overexpression, using an efflux inhibitor. The test resulted in 10 strains that phenotypically hyperexpressed these pumps (published elsewhere) [20]. These strains were tested for transcription activity of MexAB-OprM, MexCD-OprJ, and MexXY-OprM, using genotypic methods. The criterion of examining the relatively low number of strains for further analysis was comparable with other similar studies, investigating efflux pumps expression/activity and topoisomerase QRDR analysis in clinical isolates of *P. aeruginosa* [21-23]. *P. aeruginosa* wild-type strain PAO1 and laboratory mutants named as JFL-30, JFL-28 and JFL-10 that hyperexpressed MexAB-OprM, MexCD-OprJ and MexXY-OprM pumps, were also used respectively as controls in this study [24]. The *Escherichia coli* strain DH5α and plasmid pBluescript sk (-) were used as host cell and vector for cloning and *in vitro* transcription of *mexA* and *mexX*. Bacterial cells were routinely cultured in Luria-Bertani (LB) broth medium at 37°C. The DH5α cells were grown in LB broth, supplemented with 50 µg/ml of ampicillin and 8 µg/ml of tetracycline at 37°C.

Cloning and transcription analysis. Due to the presence of basic expression of two efflux pumps MexAB-OprM and MexXY-OprM, the transcription level of these pumps was tested using a semi-quantitative Reverse transcription PCR (RT-PCR) method. A regular RT-PCR protocol was also set up for transcription analysis of MexCD-OprJ efflux pump. PCR amplification of *mexA* and *mexX* was carried out using *P. aeruginosa* PAO1 genomic DNA and the primers: *mexA* (GeneBank: AAG03814.1) F: (5'-CCAACCCCCAACAACGAGC-G3'), R: (5'-TTGCTGTGGTAAATTGGC-3') (349 bp) and *mexX* (GeneBank: AB015853.1) F: (5'-TGTTCTGGCC-CTATTCTTGCG-3'), R: (5'-ACGCCCTTCGTTGGC-3') (336 bp). The genes were cloned into the Eco321 (RV) -digested pBluescript sk (-) (3 kbp) vectors and subsequently transformed into DH5α cells. The *in vitro* transcription assays were started using EcoR1-digested linear plasmid DNA of *mexA/mexX* and T3 RNA polymerase (Fermentas Inc.). Ten continuous dilutions (index: ½) were prepared from the synthesized RNA for *mexA* and *mexX*. RNA concentrations of serial dilutions were measured by spectrometry at 260 nm and reverse-transcribed into their respective complementary DNA (cDNA) using the Moloney murine leukemia virus reverse transcriptase. The cDNA was inserted in EcoR1-digested linear plasmid DNA of pBluescript sk (-) (3 kbp) vectors and subsequently transformed into DH5α cells. The *in vitro* transcription assays were started using EcoR1-digested linear plasmid DNA of *mexA/mexX* and T3 RNA polymerase (Fermentas Inc.). Ten continuous dilutions (index: ½) were prepared from the synthesized RNA for *mexA* and *mexX*. RNA concentrations of serial dilutions were measured by spectrometry at 260 nm and reverse-transcribed into their respective complementary DNA (cDNA) using the Moloney murine leukemia virus reverse transcriptase. The cDNA was inserted in EcoR1-digested linear plasmid DNA of pBluescript sk (-) (3 kbp) vectors and subsequently transformed into DH5α cells.
virus reverse transcriptase (MMLV), according to the supplier’s instructions (Fermentas Inc). The second strand PCR was followed by using template cDNA with the oligonucleotide primers as described above. The PCR products were visualized on agar gel electrophoresis and a UV transilluminator. The intensity of the PCR bands was measured using Gel analyzer software (BioDoc. GMBH) and combined with the serial RNA dilution spectrometry data to draw the mexA/mexX corresponding standard transcription plots.

RESULTS

Analysis of mexA, mexX and mexC expression and selection of double-efflux expressing strains. Figure 1 (A to C) shows the RT-PCR results of mexC, mexX and mexC transcription analysis in 10 clinical strains of *P. aeruginosa*. Accordingly, 15.5% (7 of 45) of Cip⁸ strains showed a ≥3 times greater expression of MexXY-OprM efflux pump than wild type PAO1 strain, making them overexpressing mutants. For mexA, comparison of transcription level with that of *P. aeruginosa* PAO1 wild type did not show any significant (≥3 times) expression of MexAB-OprM in any of the studied clinical strains. Analysis of mexC expression in the Cip⁸ strains of *P. aeruginosa*, using traditional RT-PCR, showed that 11.1% (5 of 45) of
the strains actively produced the MexC protein of
the three component efflux pump MexCD-OprJ.
According to our results, 4.4% (2 of 45) of the CipR
strains showed simultaneous expression and
overexpression of mexC and mexX respectively
(Fig. 1).

![Agar electrophoresis of RT-PCR against cDNA of mexX, mexA, and mexC in 10 CipR, efflux positive clinical strains of P. aeruginosa; (a) lane 1, 100 bp DNA marker; lane 2, MexXY-OprM hyper-expressing mutant (JFL-10); lane 3, P. aeruginosa PAO1 wild type strain; lanes 4-13, 10 clinical strains of P. aeruginosa (P1-P10) tested for expression of mexX gene (336 bp); (b) lane 1, 100 bp DNA ladder; lane 2, MexAB-OprM hypet-expressing mutant (JFL-30); lane 3, P. aeruginosa PAO1 wild type strain DNA PCR control; lane 4, MexCD-OprJ expressing mutant (JFL-28); lane 4, P. aeruginosa PAO1 wild type strain; lanes 5-14, 10 clinical strains of P. aeruginosa (P1-P10) tested for expression of mexC (388 bp).]

Type II topoisomerase amino acid substitutions. PCR sequencing analysis of DNA gyrase and Topoisomerase IV genes detected a single point mutation in the QRDR of gyrA at nucleotide 249 that was spotted in all tested clinical strains of P. aeruginosa and led to the amino acid substitution Threonine 83 to Isoleucine (P. aeruginosa PAO1 numbering). Sequence analysis of gyrB, parC and parE genes did not show any mutations occurring in their respective amplified QRDR.

Contribution of efflux pump and topoisomerase activity to overall antibiotic susceptibility. The MIC (Minimum Inhibitory Concentration) distribution of three antibiotics (Imipenem, Gentamicin and Ceftazidime) for the studied CipR strains is shown in Table 1.

Table 1. The Antibiotic resistance, multidrug efflux pumps expression and type II topoisomerase mutation profile of 10 clinical strains of P. aeruginosa

<table>
<thead>
<tr>
<th>Strains</th>
<th>CipR (≥4 mg/L)</th>
<th>IMI (≥4 mg/L)</th>
<th>GEM (≥16 mg/L)</th>
<th>CAZ (≥32 mg/L)</th>
<th>MDR Efflux pump</th>
<th>DNA gyrase</th>
<th>Topoisomerase IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>MexXY-OprM</td>
<td>gyrA (Thr-83►Ile)</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>MexXY-OprM</td>
<td>gyrA (Thr-83►Ile)</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>MexXY-OprM</td>
<td>gyrA (Thr-83►Ile)</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>MexXY-OprM</td>
<td>gyrA (Thr-83►Ile)</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>MexXY-OprM</td>
<td>gyrA (Thr-83►Ile)</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>MexXY-OprM</td>
<td>gyrA (Thr-83►Ile)</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>MexXY-OprM</td>
<td>gyrA (Thr-83►Ile)</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>MexCD-OprN</td>
<td>gyrA (Thr-83►Ile)</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>MexCD-OprN</td>
<td>gyrA (Thr-83►Ile)</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>MexCD-OprN</td>
<td>gyrA (Thr-83►Ile)</td>
<td>–</td>
</tr>
</tbody>
</table>

CipR, Ciprofloxacin resistant; IMIR, Imipenem resistant; GEMR, Gentamicin resistant; CAZR, Ceftazidime resistant

CipR, Ciprofloxacin resistant; IMIR, Imipenem resistant; GEMR, Gentamicin resistant; CAZR, Ceftazidime resistant
Accordingly, 3 of 5 strains expressing MexCD-OprJ and also 5 of 7 strains overexpressing MexXY-OprM were resistant to Ceftazidime and Gentamicin. One MexCD-OprJ and MexXY-OprM double expressing strain was also shown to have triple resistance to gentamicin, Ceftazidime and Imipenem. In contrast, a similar single gyrA point mutation was detected in all Cip\(^R\) strains, regardless of their secondary antibiotic resistance profile.

DISCUSSION

Genotypic analysis of fluoroquinolone resistance has been previously reported in clinical isolates of *P. aeruginosa* [21, 28-30]. In this study, we reported the first genotypic analysis of major multidrug efflux pumps in clinical isolates of *P. aeruginosa*, collected from public medical settings in Iran. Using a genotypic detection method, we analyzed three pumps: MexAB-OprM, MexXY-OprM and MexCD-OprJ on clinical isolates with significant hyperactive efflux phenotype [20]. Due to the upstream regulation of the genes, responsible for encoding the components of the Mex efflux pumps in *P. aeruginosa*, the indication of gene expression within the operon region implies the potential activity/hyperactivity of downstream genes that encode components of the efflux pump [31]. We detected 4.4% (2 of 45) of Cip\(^R\) isolates expressing at least two efflux pumps simultaneously. Emergence of simultaneous expression of different efflux pumps may be due to double mutations in gene regions regulating the operons that potentially confer higher level of antibiotic resistance to mutant strains [27]. This potentiality indicates a higher risk for emergence of multidrug resistance, with lower susceptibility to substrates of these pumps. We also attempted to sequence the type II topoisomerase subunits A and B genes gyrA, parC and gyrB, parE respectively. QDQR mutation analysis showed the replacement of Thr 83 with Ile in gyrA of all studied strains. This result is supported by previous reports on clinical strains of *P. aeruginosa* [30, 32]. The change of polar Threonine to the nonpolar and highly hydrophobic Isoleucine may affect the gyrase-quinolone interaction by loss of necessary enzyme-drug contacts or conformational changes that may eventually result in antibiotic resistance. The presence of unique gyrA mutation in all studied strains supports the fact that DNA gyrase is basically the first target enzyme of type II topoisomerase in ciprofloxacin resistance [32]. Regarding the relation of antibiotics MIC to efflux pumps and topoisomerase activity, the overexpression of MexCD-OprJ and MexXY-OprM potentially reduces the strains susceptibility to non-fluoroquinolone antibiotics Gentamicin (Aminoglycosides) and Ceftazidime (beta-lactam). In contrast, the gyrA single mutation (Thr 83) did not seem to confer resistance to any of tested non-fluoroquinolone antibiotics. The application of RT-PCR method in this study resulted in a more accurate analysis than that obtained from the phenotypic analysis of efflux activity by differential selection of active multidrug efflux pumps in studied strains. Real-Time PCR quantitation method has a higher specificity than the traditional RT-PCR, but it is still considered an expensive technique and not easily affordable for every laboratory routine use [33] in developing countries. Further work is needed to transfer the results of this study into a clinical setting, to provide information in regards to the choice of antibiotics dosage and to translate the results into improvements in hospitalization and healthcare policies.

ACKNOWLEDGMENTS

We thank Professor Jose L. Martinez (Centro Nacional de Biotecnologia, Madrid, Spain) for providing us with the wild-type (PAO1) and mutant strains of *P. aeruginosa*. Also special thanks go to Mr. Mahdi Faraji (Tarbiat Modares University) for his helpful assistance with the mathematics.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.
Ciprofloxacin Resistance in P. aeruginosa

REFERENCES

